

معهد قطر لبحوث الحوسبة Qatar Computing Research Institute

Member of Qatar Foundation bö uwoogo jogo

Pairwise Neural Machine Translation Evaluation

Francisco Guzmán, Shafiq Joty, Lluís Màrquez and Preslav Nakov Qatar Computing Research Institute, HBKU

Motivation

Pairwise MT Evaluation

- Learn to differentiate better from worse translations
- State-of-the-art: structured input and preference-kernel learning (Guzmán et al., EMNLP 2014)
- Inspired by human ranking-based MT evaluation. Evaluators compare pairs of hypotheses

Learning Task

- Binary classification: $y = \begin{cases} 1 & \text{if } t_1 \text{ is better than } t_2 \text{ given } r \\ 0 & \text{if } t_1 \text{ is worse than } t_2 \text{ given } r \end{cases}$
- Model:
- $p(y|t_1, t_2, r) = Ber(y|f(t_1, t_2, r))$ $\hat{\mathcal{Y}}_{n\theta} = f(t_1, t_2, r) = \operatorname{sig}(\mathbf{w}_{\mathbf{v}}^{\mathbf{T}} \phi(t_1, t_2, r) + b_v)$
- Cost function:

Input: (Translation 1, Translation 2, Reference)

Question: Is *T1* a better translation than *T2*, given *R*?

Why Neural Networks?

- State-of-the-art uses computationally expensive tree kernels (esp. at test time). NNs provide fast inference
- NNs can learn effectively from compact semantic and syntactic distributed representations
- They are highly competitive

Negative log-likelihood: $J_{\theta} = -\sum y_n \log \hat{y}_{n\theta} + (1 - y_n) \log (1 - \hat{y}_{n\theta})$ $J_{\theta} = -\sum_{n} y_n \operatorname{sig}(-\gamma \Delta_n) + (1 - y_n) \operatorname{sig}(\gamma \Delta_n)$ $\Delta = f(t_1, t_2, r) - f(t_2, t_1, r)$ Kendall's-tau: Features

Setting

- Pairwise lexical features: BLEU, METEOR, NIST, TER
- Word embeddings:
 - Syntactic embeddings from an RNN parser (Socher et al. 2013)
 - Semantic embeddings from word2vec, GloVE, COMPOSES

Neural Architecture

					٦
sentences	embeddings	pairwi	ise nodes	pairwise features	
	Λ^{Xt1}		h ₁₂	$\psi(t_1,r) \psi(t_2,r)$	
ranslation 1	·····.				i

Experimental Setup

• Data (human pairwise judgments):

Train: WMT11 (11,160 pairs) Dev: WMT13 (5,000 pairs) Test: WMT12 (3,798 pairs)

Lex+Syn+Semantics	29.70
-------------------	-------

Other Metrics

BLEU	18.46
METEOR	23.56
DiscoTK	30.50
Kernel Approach	23.70

Different Semantic Embeddings

Source	Alone	Comb.
GW25	10.01	29.70
GW300	9.66	29.90
CC-300-42B	12.16	29.68
CC-300-840B	11.41	29.88
Word2Vec300	7.72	29.13
COMPOSES400	12.35	28.54

1311123		
+GW25	24.92	
+SYN25+GW25	26.15	

Deep vs. Flat NN

Single-layer	29.10
Multi-layer	29.70

Logistic vs. Kendall Cost

Logistic	29.70
Logistic + Kendall	29.53 29.92

sources of information

- Results are additive w.r.t. the sources of information
- Enables fast inference
- Achieves state-of-the-art results
- Future work:
 - Add source-sentence information
- Use the NN framework for:
 - re-ranking
 - quality estimation
 - system combination