
Paraphrases In Phrase-Based Statistical Machine Translation

Motivation

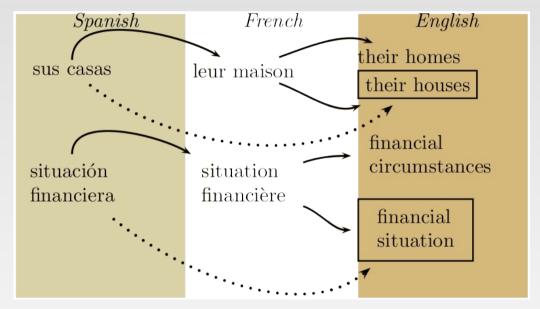
- -4000-5000 different languages in the world.
- Information on the Internet growing exponentially!
- Access to information is **limited** by **language** barrier.

Statistical Machine Translation

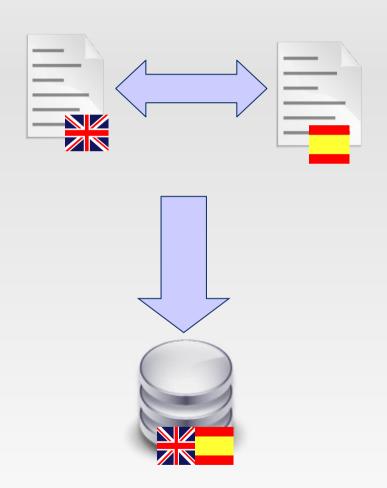
- Statistical Analysis of bilingual texts.
- Started in 80's (IBM Candide).
- Phrase-based concept introduced (Och)
- Koehn et al. (2003) Introduced the concept of Phrase based Statistical Machine Translation

$$arg max_e p(e|f) = arg max_e p(f|e) p(e)$$

This works well

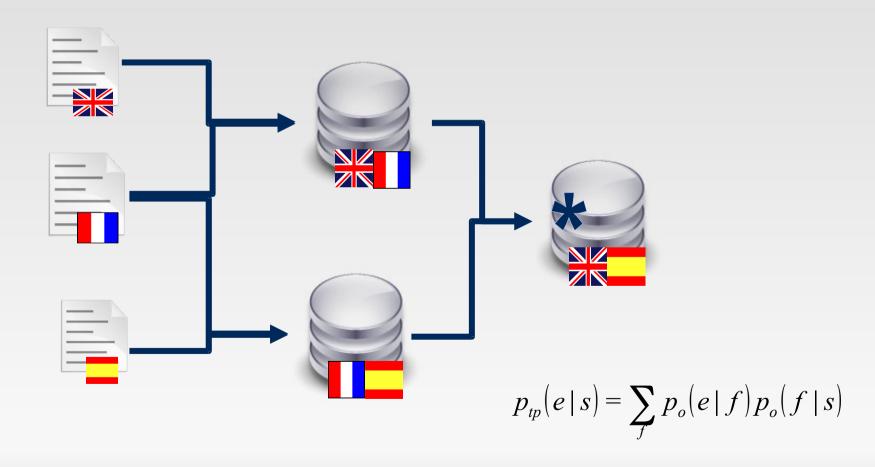

- STMT have proven to be very effective.
- Not bound to source/target language.
- Outstanding results compared to other MT systems.

but&


 Limited by training and availability of resources(corpora).

Translation Paraphrases

- Paraphrases: different phrases carrying similar meaning
- Translation Paraphrases: Mechanism of preserving meaning through translation
- Serve to give more flexible interpretations of source texts, as well as to reinforce good translations; regardless of the translation process.



Training

- Patterns are discovered through alignments.
- " Probabilities are assigned
- " Leaned data is stored in phrase tables

Training pt. 2

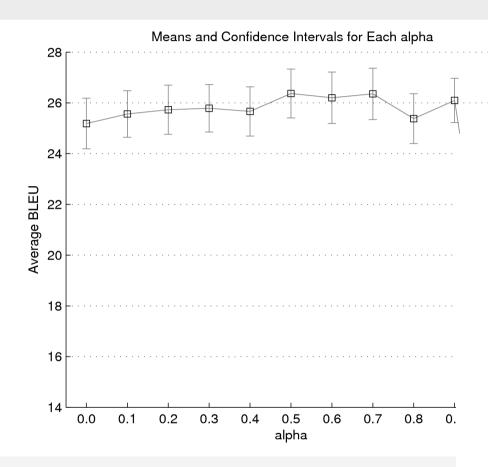
How much extra information?

- Comparative Experiments
- Different Training sizes
- Alpha variation

$$p_{mix}(e \mid s) = (1 - \alpha)p_o(e \mid s) + p_{tp}(e \mid s)$$

Experimental Setup

- Training Corpus:
 - Europarl
 - Size (# lines) 10k,20k,
 40k, 80k, 100k
- MERT Training:
 - Europarl 2002
- Software Used:
 - Giza++
 - Moses Decoder
 - SRILM


```
 \begin{array}{c} \operatorname{En,\,Es,\,Fr} \\ 10k \end{array} \left. \begin{array}{c} \operatorname{En-Es} \\ \operatorname{En-Fr} \\ \operatorname{Fr-Es} \end{array} \right\} \begin{array}{c} \operatorname{En-Es} \\ \operatorname{En-Es} \\ \operatorname{En-Es-10k-\alpha-0.2} \\ \operatorname{En-Es-10k-\alpha-0.2} \\ \\ \operatorname{En-Es-10k-\alpha-0.2} \\ \\ \operatorname{En-Es-10k-\alpha-0.9} \\ \\ \vdots \\ \operatorname{En-Es-100k-\alpha-0.1} \\ \operatorname{En-Es-100k-\alpha-0.1} \\ \operatorname{En-Es-100k-\alpha-0.2} \\ \\ \operatorname{En-Es-100k-\alpha-0.2} \\ \\ \operatorname{En-Es-100k-\alpha-0.2} \\ \\ \end{array}
```

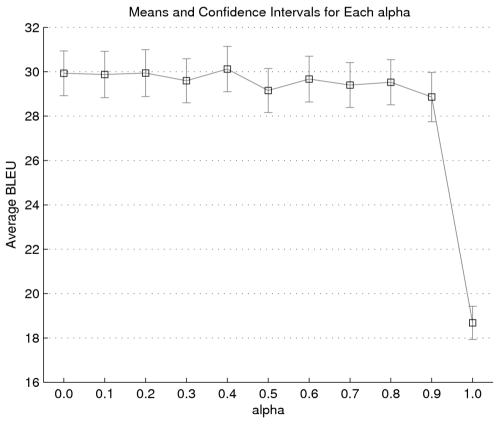
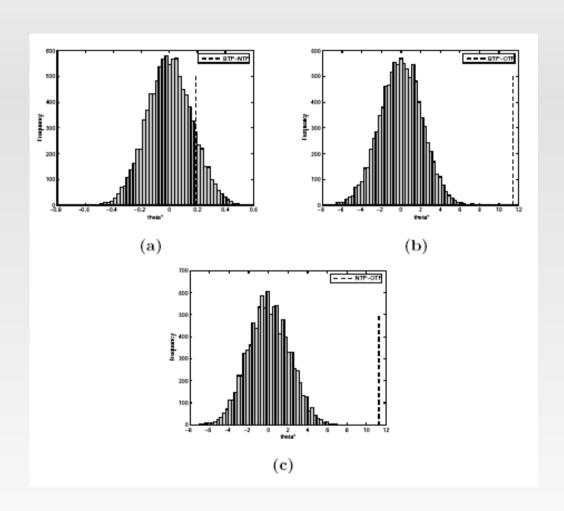

Results

Table 1. Experimental results presented by alpha and number of training sentence pairs. For each registry we have the average BLEU of the 30 translation problems (\bar{x}) and their standard error $(\sigma_{\bar{x}})$.

	10k		20k		40k		80k		100k	
α	\bar{x}	$\sigma_{\bar{x}}$								
0.0	24.01	0.43	25.19	0.49	27.58	0.44	29.93	0.49	30.60	0.48
0.1	24.22	0.46	25.56	0.45	28.08	0.48	29.88	0.51	30.51	0.51
0.2	24.39	0.46	25.73	0.47	28.17	0.47	29.94	0.52	30.40	0.48
0.3	24.36	0.46	25.79	0.46	28.04	0.46	29.60	0.49	30.69	0.49
0.4	24.24	0.46	25.66	0.47	28.26	0.46	30.12	0.50	30.72	0.48
0.5	24.23	0.44	26.37	0.47	28.69	0.45	29.15	0.49	30.43	0.50
0.6	24.61	0.46	26.20	0.49	28.23	0.45	29.67	0.50	30.31	0.48
0.7	24.10	0.47	26.36	0.50	28.34	0.46	29.40	0.50	30.63	0.47
0.8	24.18	0.46	25.38	0.48	28.23	0.44	29.52	0.50	30.29	0.47
0.9	23.94	0.43	26.10	0.43	27.44	0.45	28.86	0.54	29.51	0.44
1.0	13.74	0.35	15.66	0.34	17.31	0.37	18.68	0.37	19.39	0.37

Confidence Intervals

Anova


Table 2. ANOVA results for each k-group

k-size	Source	SS	$\mathrm{d}\mathrm{f}$	$_{ m MS}$	F	pvalue
10k	Groups Error Total	3011 1883.3 4894.3	10 319 329	301.1 5.9	51	0.00
20k	Groups Error Total	2866 2037.7 4903.7	10 319 329	286.6 6.39	44.87	0.00
40k	Groups Error Total	3213.4 1929.3 5142.7	10 319 329	321.34 6.05	53.13	0.00
80k	Groups Error Total	3297.9 2321.1 5619	10 319 329	329.79 7.28	45.32	0.00
100k	Groups Error Total	3343.5 2131 5474.5	10 319 329	334.35 6.68	50.05	0.00

Running pairwise comparisons

- Selected groups
 - Non-TP
 - Best-TP
 - Only-TP
- Algorithm

$$\theta = \sum_{i=1}^{N} (a_i - b_i)/N$$
 for $a_i \in S_A$ and $b_i \in S_B$

Practical Comparisons

ORIGINAL	alpha 0	best alpha	alpha 1	
that is why the commission has lent substantial and tangible support to the process of transition to democracy in chile.	for this reason the commission has brindado a process with considerable support and the transition to democracy in chile.	for this reason the commission has given a considerable support and with the process of transition to democracy in chile.	for this reason the commission has given a process with considerable support and the transition to democracy in chile.	
mr president, i am very pleased to speak on behalf of the group of the greens / european	mr president, i am very pleased to be able to speak on behalf of the group of the greens	mr president, i am very pleased to act on behalf of the group of the greens	mr president, i am mucho am pleased to act on behalf the group of the greens	
can assure you that the commission will honour this agreement in full.	can assure you that the commission will fully atener to this agreement.	i can assure you that the commission will fully atener to this agreement.	les i can assure you that the commission is going to completely atener this agreement	

Pairwise Results

 ${\bf Table~4.~Summarized~results~for~pairwise~comparisons~presented~by~comparison~and~k-group}$

	Non-TP vs Best-TP		Best-TI	P vs Only-TP	Non-TP vs Only-TP		
size-k	θ	pvalue	θ	pvalue	θ	pvalue	
10k	0.6003	0.0001	10.87	0.0001	10.268	0.0001	
20k	1.1817	0.0000	10.71	0.0001	9.52	0.0001	
40k	1.1	0.0000	11.38	0.0001	10.27	0.0001	
80k	0.1910	0.1112	11.443	0.0001	11.252	0.0001	
100k	0.121	0.1116	11.325	0.0001	11.204	0.0001	

Conclusions

- As we increase training size TPs have a lower impact.
- For small training sizes, there is a signicant improvement in translation quality by the utilization of TPs.
- TPs by themselves produce poor translations.

Future work

- Test with Scarce data.
- Test with out-of domain translations
- Assess intermediate language dependency of TP using information of language typology.