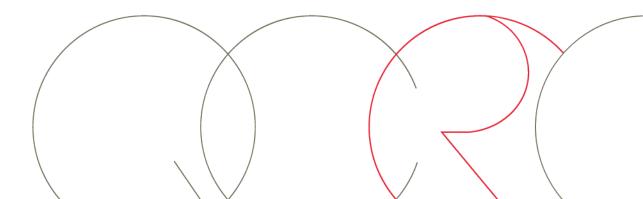


معهد قطر لبحوث الحوسبة Qatar Computing Research Institute

مضوفى مؤسسة قطر Member of Qatar Joundation

The QCN System for Egyptian Arabic to English Machine Translation

Presenter: Hassan Sajjad



QCN Collaboration

Nizar Habash

جامعـة نيويورك أبوظـي NYU ABU DHABI

معهد قطر لبحوث الحوسبة Qatar Computing Research Institute Ahmed Abdelali Nadir Durrani Francisco Guzmán Preslav Nakov **Hassan Sajjad** Stephan Vogel

NIST Egyptian Arabic-English Dataset

- Three genres
 - SMS, Chat and CTS
- Dataset distribution
 - Approximately 3000 sentences for tuning
 - The rest is used for training
- Development sets provided by NIST
 - Test: devTest
 - TestG: gold devTest

Baseline System Settings

- Phrase-based SMT system with the following settings:
 - MGIZA for alignment
 - Phrase tables with Kneser-Ney smoothing
 - Lexicalized reordering
 - Operation sequence model
 - Tuning using PRO and MIRA
 - Minimum Bayes risk decoding
 - Cube pruning
 - Other Moses defaults...

Important Modules

Data Preprocessing

- Arabizi to UTF8 conversion
- Normalization
- Speech markups removal
- Cleaning
- Intended vs. literal meaning
- Egyptian Arabic segmentation
- Egyptian Arabic to MSA conversion

System Features

- Class-based models
- Neural network joint model
- Interpolated language model
- Sparse features
- Adaptation
- Unsupervised transliteration model
- System combination

Data Preprocessing

- Arabizi to UTF-8 using 3arrib
- Normalization
 - Emoticons e.g. ->:=P
 - \circ Tokenizer splits them into single units like > : = P
 - \circ Normalizing emoticons to their original form
 - Fixed character repetitions on both Arabic and English side

 Map repetitions like hahahahah to one from say, haha
 Convert emphasis repetitions like Yessss to their original form
- Removing markups e.g. %fw, %fp, {laugh}

Data Preprocessing: Egyptian Segmentation

- Segmentation of Egyptian Arabic using MADAMIRA
 - ATB, S2, D3

					up to po	^{D +3} BLEU Dints
	SN	ЛS	CI	ΗT	C	ГS
	Test	TestG	Test	TestG	Test	TestG
No segmentation	21.02	21.64	20.27	22.34	20.60	23.36
D3	23.68	23.41	23.22	25.97	21.72	24.89
S2	23.62	23.66	22.82	25.41	21.61	24.67
ATB	23.57	23.50	22.82	26.01	21.68	24.83

Data Preprocessing: Egyptian to MSA Conversion

- Character-level system to convert Egyptian words to MSA
 - e.g. يتكلم to يتكلم

e.g. بيتكلم to						Mixed re
	SN	ЛS	Cl	ΤH		TS
	Test	TestG	Test	TestG	Test	TestG
Egyptian	21.02	21.64	20.27	22.34	20.60	23.36
Converted MSA	21.54	21.82	20.70	22.77	21.30	23.81
Converted MSA, ATB	21.32	21.06	21.55	23.70	21.73	24.30

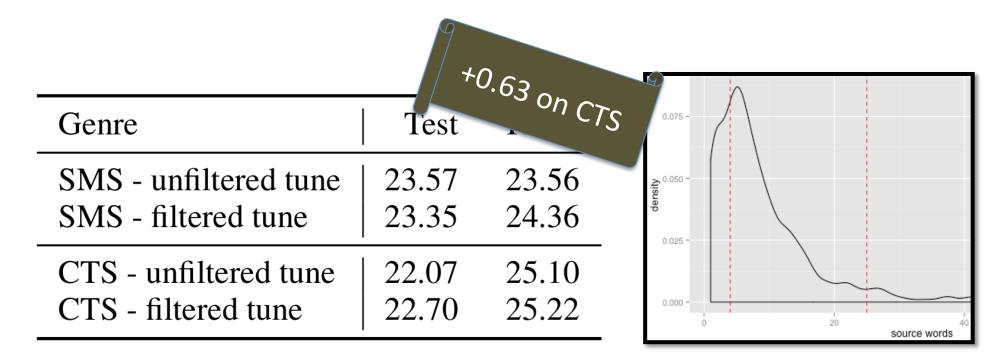
- Gains are low compared to the system trained using Egyptian segmentation
- Highly dialectal nature of the data
 - requires more lexical substitution than character-level changes

Data Preprocessing: Tuning Dataset Issues

- Missing markers of literal and actual translations in references
- Imbalanced length ratio (i.e. English sentence is 2x of an Arabic sentence)
- Problem: Imbalanced tuning sentences will result in bad tuning weights

Data Preprocessing: Cleaned Tuning Dataset

• Removing sentences with abnormal word length (4<length<25) and length ratio in either source or target



Data Preprocessing: Ex. Noisy References

- Literal meaning is sometimes noisy
- Solution: We used the intended meaning only

Source

- احدث الاغاني يا خارجة من باب الارشاد و واخدة قرض من الدوحة، دوحة، دوحة دوحة
- Reference The latest song: [O Muslim Brotherhood who are borrowing money from Doha / O that cute girl who just took a fresh shower, with her cheeks beautifully reddish].

Actual meaning

The best songs oh who you are leaving from the door of Ershad and borrowing money from Doha, Doha, Doha

Important Modules

Data Preprocessing

- Arabizi to UTF8 conversion
- Normalization
- Speech markers removal
- Cleaning
- Intended vs. literal meaning
- Egyptian Arabic segmentation
- Egyptian Arabic to MSA conversion

System Features

- Class-based models
- Neural network joint model
- Interpolated language model
- Sparse features
- Adaptation
- Unsupervised transliteration model
- System combination

System Features: Class-based Models

- Map words into a coarse representation
 - Reduces data sparseness
 - Generalizes the data
- Word clusters using mkcls (k=50, 500)
 - Translation model
 - OSM model over cluster IDs

	SMS		CI	ΗT	CTS Test TestG	
	Test	TestG	Test	TestG	Test	TestG
Baseline + class-based models	24.22 24.63	24.33 25.16	23.02 23.18	25.60 26.30	21.93 22.20	24.88 25.04

System Features: Neural Network Joint Model

- Distributed representation of words
 - Similar to class-based models
 - o Reduces data sparseness
 - o Generalizes the data

	Test	SMS TestG		CHT TestG		CTS TestG
Baseline	24.58	24.33	24.02	27.11	22.64	24.95
+ NNJM Model	25.01	25.72	24.24	27.41	22.68	25.21

System Features: Genre-Based Interpolated LM

- Divide the available data into groups such as target side of
 - available Egyptian data
 - available Chinese data
 - MSA News
 - MSA non-News
- Minimize the perplexity on each genre's tuning set

	SMS		CH		CTS		
	Test	TestG	Test	TestG	Test	TestG	
Concatenated LM 24 Interpolated LM 25	4.19	24.00	23.34	25.89 26.16	22.75	25.09	

System Features: Additional Features

- Domain indicator features
- Source and target word deletion features

		ЛS		TH	C	
	Test	TestG	Test	TestG	Test	TestG
Baseline + sparse features	24.58	24.82	23.36	26.11	22.64	24.95
+ sparse features	24.54	25.36	24.02	27.11	21.61	24.08

Mixed results

System Features: Adaptation

- Egyptian data with three genres
- MSA data
- Techniques
 - Concatenation
 - Phrase table merging
 - Back-off phrase tables

System Features: Adaptation

- Various combination of available Egyptian data for training
- Testing on SMS genre

		Concatenation Works the best!
Training	Test 📕	Testo
SMS	21.30	21.99
CAT(SMS, CHT, CTS)	23.78	23.20
SMS, Backoff(CHT,CTS)	22.55	23.00
CAT(SMS,CHT), Backoff(CTS)	22.54	23.20
MergePT(CAT(SMS,CHT),CTS)	23.69	24.40

System Features: Adaptation

- MSA phrase tables Backoff and Merging
- Helps to translate OOV words which would also help in human evaluation

		Merging with NSA translates
Training	Test	Tes Words
CAT(SMS, CHT, CTS)	23.78	23.20
CAT(SMS, CHT,CTS), Backoff(MSA)	23.70	23.64
MergePT(CAT(SMS,CHT,CTS),MSA)	23.83	23.60

System Features: Unsupervised Transliteration Mining

- Used unsupervised transliteration mining module (implemented in Moses) to transliterate OOV words
 - extracts a list of candidates from parallel training sentences
 - mines transliteration pairs
 - builds a phrase table of transliteration options
 - Post-processes the machine translation output

- Most of the OOVs are non-named entities
 - Require translation rather than transliteration

System Combination

Combine machine translation output of various system

				- 10p	in CTS	
	SN	ЛS	Cl	T	_	
	Test	TestG	Test	TestG	Test	festG
Egyptian D3	25.28	26.05	23.87	27.07	23.34	26.05
Egyptian S2	24.93	25.61	24.09	27.01	22.11	24.50
Egyptian ATB	25.13	25.80	24.24	27.41	22.83	25.56
Egyptian ATB + MSA backoff	25.20	25.04	23.48	26.16	23.01	25.67
Output combination	26.13	26.79	24.86	27.95	22.89	25.88

Summary

- Data preprocessing is one of the major challenges in this translation task
- Normalization such as handling emoticons, fixing repetitions and cleaning helps to achieve better alignment
- Improvements of each module vary by genre
- Consistent improvements
 - Egyptian Arabic segmentation (up to +3 points)
 - Genre-based interpolated LM (up to +1 points)
 - Class-based models (up to +0.6 points)

Thank you

