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What to Expect Today

� Why is evaluating MT a hard task?

� How do we (humans) evaluate translations?

� What are different approaches for automatic MT eval?

� What are (dis-)advantages of automatic MT eval?
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Motivation 4

Can You Evaluate This Translation?

Source:
Renzi logra una nueva ley electoral para dar estabilidad a Italia

Candidate/Hypothesis:
Renzi achieved a new electoral law to give stability to Italy
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Motivation 5

What Makes a Good Translation?

According to professional translators, it all depends...

� guidelines (i.e. client requirements)

� genre (e.g. news, blog)

� style (e.g. humorous, wordy, scientific)

� localization (e.g. tailored for target audience)

� ...

Not an easy task!
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Motivation 6

Difficulties of MT Evaluation

� Machine Translation is an open NLP task

� the correct translation is not unique
� the set of admissible translations can be large
� translation correctness is not black and white

� Evaluation is necessary in the MT system development cycle
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Motivation 8

What Makes a Good Automatic Translation?

Idea: Compare MT output to a human reference

Source:
Renzi logra una nueva ley electoral para dar estabilidad a Italia

Candidate/Hypothesis:
Renzi achieved a new electoral law to give stability to Italy

Reference:
Renzi passed new electoral law aimed to stabilize Italy

This is a simpler task
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Motivation 10

MT Evaluation

Setting Compute similarity between system’s output and one
or several reference translations

Challenge The similarity measure should be able to discriminate
whether the two sentences convey the same meaning

two possibilities: manual and automatic evaluation
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Manual Evaluation 12

Talk Overview

1 Motivation

2 Manual Evaluation

3 Automatic Evaluation

4 Recent advances

5 Conclusions

6 Extra slides
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Different Views on Quality

Adequacy (or Fidelity) Does the output convey the same
meaning as the input sentence? Is part of the
message lost, added, or distorted?

Fluency (or Intelligibility) Is the output fluent? This involves
both grammatical correctness and idiomatic word
choices.

Post–edition effort Time required to repair the translation,
number of key strokes, etc.
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Manual Evaluation: TAUS recommendation

Adequacy How much of the meaning
expressed in the gold-standard
translation or the source is also
expressed in the target translation?

Fluency To what extent is a target side
translation grammatically well
informed, without spelling errors
and experienced as using
natural/intuitive language by a
native speaker?

4 Everything
3 Most
2 Little
1 None

4 Flawless
3 Good
2 Disfluent
1 Incomprehensible

Other examples: NIST
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Ranking

Pairwise

Annotators chose the best system, given the source and target sentence,

and 2 anonymised random systems.

N-way

Annotators rank n anonymised systems, randomly selected and randomly

ordered.
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Ranking with Appraise
(Federmann,2012)

Appraise
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Ranking is better

Advantages:

� Conceptually easier to rank

� Higher agreement among annotators
(Callison-Burch et al., 2007)

� No scales to be defined

Disadvantages:

� Less information is provided
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Manual Evaluation
HTER

Human-targeted Translation Error Rate, HTER

Annotation Post-edition of the candidate translation to have the
same meaning as a reference translation with as few
edits as possible

Evaluation TER with the candidate translation and the
post-edited reference

HTER =
Substitutions + Insertions + Deletions + Shifts

ReferenceWords
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Evaluation matters!

Progress in the field is measured by evaluation campaigns:

NIST Open Machine Translation Evaluation

WMT Workshop Machine Translation

IWSLT International Workshop on Spoken Language Translation
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Human Evaluation Shortcomings

� Subjective

� Costly

� Non-reusable
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Talk Overview

1 Motivation

2 Manual Evaluation

3 Automatic Evaluation

4 Recent advances

5 Conclusions

6 Extra slides
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Reference-based Automatic Evaluation (RAE)
Setting

⇒ Compute similarity between MT system’s output (Hyp) and
one or several reference translations (Ref)

Source Es un plan de acción que asegura que el Ejército

siempre cumpla las órdenes del partido

Hypothesis It is a guide to action which ensures that the military

always obeys the commands of the party.

Reference 1 It is a guide to action that ensures that the military

will forever heed Party commands .

Reference 2 It is the guiding principle which guarantees the

military forces always being under the command of the

Party.

Challenge

⇒ The similarity measure should be able to discriminate
whether the two sentences convey the same meaning
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Desiderata for MT Metrics
(Lavie, 2009)

Human-like High-levels of correlation with quantified human
notions of translation quality

Fine-grained Sensitivity to small differences in MT quality between
systems and versions of systems

Consistency Same MT system on similar texts should produce
similar scores

Reliability MT systems that score similarly will perform similarly

Lightweight Fast, easy to run
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Different Levels of Analysis

� Lexical (words)

� Syntactic

� Semantic

� Pragmatic (discourse)
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Lexical Matching

First approaches

⇒ Lexical similarity as a measure of quality

. word n-gram matching, edit distance, etc.

. BLEU, NIST, TER, Meteor, Rouge, etc.

. (Papineni et al., 2002; Doddington, 2002; Snover et al., 2006;

Lavie & Agarwal 2007; Lin, 2004; etc.)

Nowadays, BLEU is accepted as the de-facto standard metric.
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IBM BLEU

BLEU: a Method for Automatic Evaluation of Machine Translation

Kishore Papineni, Salim Roukos, Todd Ward, Wei-Jing Zhu
IBM Research Division

“The main idea is to use a weighted average of variable length phrase

matches against the reference translations. This view gives rise to a

family of metrics using various weighting schemes. We have selected

a promising baseline metric from this family.”
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Automatic evaluation
IBM BLEU: Papineni, Roukos, Ward and Zhu (2001)

BiLingual Evaluation Understudy, BLEU

BLEU = BP· exp
(∑N

n=1 wn logPn

)

� Precision at different levels (n=1: unigrams, n=2: bigrams,
etc)

� Geometric average of Pn (empirical suggestion)

� wn positive weights summing to one (typically 1/N)

� Brevity penalty
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IBM BLEU

Hypothesis:

It is a guide to action which ensures that the military always

obeys the commands of the party.

Reference 1:

It is a guide to action that ensures that the military will

forever heed Party commands.

Reference 2:

It is the guiding principle which guarantees the military

forces always being under the command of the Party.
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IBM BLEU

Modified n-gram precision (1-gram)

Precision-based measure, but:

Prec. =
1 +

7

Candidate:

The the the the the the the.

Reference 1:

The cat is on the mat.

Reference 2:

There is a cat on the mat.
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IBM BLEU
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IBM BLEU

Modified n-gram precision (1-gram)

Precision-based measure, but: Prec. =
6 +

7
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IBM BLEU

Modified n-gram precision (1-gram)

Precision-based measure, but: Prec. =
7

7
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The the the the the the the.
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Reference 2:
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IBM BLEU

Modified n-gram precision (1-gram)

A reference word should only be matched once.

Algorithm:

1 Count number of times wi occurs in the candidate.

2 Keep the minimum of (1) and the maximum number of times
wi appears in any reference (clipping).

3 Add these values and divide by candidate’s number of words.
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IBM BLEU

Modified n-gram precision (1-gram)

Modified 1-gram precision:

P1 =

2

7

Candidate:

The the the the the the the

Reference 1:

The cat is on the mat

Reference 2:

There is a cat on the mat

1 wi → The
#Wi ,R1 = 2
#Wi ,R2 = 1
#Wi ,C = 7

2 Max(R∗)=2,
⇒ Min(R∗,c)=2

3 No more distinct words
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Extending to n-grams

� Generalisation to multiple sentences:

Pn =

∑
C∈{candidates}

∑
ngram∈C Countclipped(ngram)∑

C∈{candidates}
∑

ngram∈C Count(ngram)

low n
adequacy

high n
fluency
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Automatic evaluation
IBM BLEU: Papineni, Roukos, Ward and Zhu (2001)

Brevity penalty

Candidate:

of the

P1 = 2/2, P2 = 1/1

Reference 1:

It is a guide to action that ensures that the military will

forever heed Party commands

Reference 2:

It is the guiding principle which guarantees the military

forces always being under the command of the Party

Reference 3:

It is the practical guide for the army always to heed the

directions of the party
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Automatic evaluation
IBM BLEU: Papineni, Roukos, Ward and Zhu (2001)

Brevity penalty

BP =

{
1 if c > r

e1−r/c if c ≤ r

c candidate length, r reference length

� Multiplicative factor

� At sentence level, huge punishment for short sentences

� Estimated at document level
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Sentence-level BLEU

Sometimes we want to evaluate BLEU at the sentence level
This can lead to trouble:

� Problem
� Precision: Zero matches = Zero score

� Solution
� Smooth Precision : Add + 1 to precision counts
� Smooth BP : Add +1 to reference component
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Limits of lexical similarity

Hyp: This sentence is going to be difficult to evaluate.

Ref1: The evaluation of the clause is complicated.

Ref2: The sentence will be hard to qualify.

Ref3: The translation is going to be hard to evaluate.

Ref4: It will be difficult to punctuate the output.
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Extending the reference material
METEOR, Banerjee and Lavie (2005)

Metric for Evaluation of Translation with Explicit ORdering

METEOR = (1− Pen)Fα

Fα =
PR

αP + (1− α)R
Precision and Recall
weighted harmonic mean

Pen = γ

(
chunks

mapped unigrams

)β Penalty factor, penalises
non-contiguous matches

Matches: exact, lemma, synonym, paraphrase
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Problems of Lexical Similarity Measures

� Lexical similarity is nor a sufficient neither a necessary
condition so that two sentences express the same meaning
(Culy and Riehemann, 2003; Coughlin, 2003; Callison-Burch et al., 2006)

� The reliability of lexical metrics depends very strongly on the
heterogeneity/representativity of reference translations

� Lexical metrics have problems distinguishing MT output from
fully fluent and adequate translations obtained from them
through professional postediting (Denkowski and Lavie, 2012)
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Problems of Lexical Similarity Measures

NIST 2005 Arabic-to-English Exercise
(Callison-Burch et al., 2006; Koehn and Monz, 2006)

 2

 2.5

 3

 3.5

 4

 0.38  0.4  0.42  0.44  0.46  0.48  0.5  0.52  0.54

A
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q
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Problems of Lexical Similarity Measures

NIST 2005 Arabic-to-English Exercise
(Callison-Burch et al., 2006; Koehn and Monz, 2006)

⇒ n-gram based metrics favor MT systems which closely
replicate the lexical realization of the references

⇒ Test sets tend to be similar (domain, register, sublanguage)
to training materials

⇒ Statistical MT systems heavily rely on the training data

⇒ Statistical MT systems tend to share the reference
sublanguage and be favored by n-gram based measures
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Linguistic Generalization

Active area of research

⇒ Generalization over lexical matching and usage of more
complex linguistic information to compute similarity

. stemming, synonymy, paraphrasing, etc.

. shallow parsing, constituency and dependency parsing, named
entities, semantic roles, textual entailment, etc.

. discourse trees
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Existing Metrics
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Existing Metrics
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Talk Overview

1 Motivation

2 Manual Evaluation

3 Automatic Evaluation

4 Recent advances

5 Conclusions

6 Extra slides
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Which one is better?

Idea: Measure the
correlation of
evaluation metrics
with human
judgments (e.g.
Appraise)

Campaigns:

� metricsMATR
(NIST)

� WMT metrics

Metric Orig.

II

SEMPOS .902
AMBER .857
Meteor .834

TerrorCat .831
SIMPBLEU .823

TER .812
BLEU .810
posF .754
· · ·

III
NIST .817
· · ·

IV
Asiya-lex .879

· · ·
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Going upwards: Discourse
Guzmán et al, ACL2014

ElaborationROOT

SPAN Nucleus
Attribution

Satellite

Voices are coming from Germany , SPANSatellite SPANNucleus

suggesting that ECB be the last resort creditor .



 

  

 

SPANROOT

In Germany the ECB should be for the creditors of last resort .
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Setting

� Discourse structures: computed at sentence level with the
RST-based parser from Joty et al. (2012)

� Similarity: computed with STK kernel (Collins & Duffy, 2001)

⇒ the similarity is the sum of all common sub-trees
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Untuned combinations [WMT12, into-en, system-level, ρ]

� Combination
with other
existing
evaluation
metrics

� Other smarter
ways are
possible.

Metric Orig. +dr-lex
I DR-lex .876 –

II

SEMPOS .902 .903
AMBER .857 .869
Meteor .834 .888

TerrorCat .831 .889
SIMPBLEU .823 .859

TER .812 .848
BLEU .810 .846
posF .754 .857
· · ·

III
NIST .817 .875
· · ·

IV
Asiya-lex .879 .882

· · ·
average .839 .874
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Talk Overview

1 Motivation

2 Manual Evaluation

3 Automatic Evaluation

4 Recent advances

5 Conclusions

6 Extra slides
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Virtues and curse

⇒ Automatic evaluation metrics have notably accelerated the
development cycle of MT systems

. Cheap, objective and reusable

. Used for error analysis, system optimization, system
comparison, etc.

⇒ Risks of Automatic Evaluation

. System over-tuning

. Blind system development

. Unfair system comparisons
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MT Evaluation
Summary

� Evaluation is important in the system development cycle.
Automatic evaluation accelerates significantly the process.

� Manual evaluation is still necessary but shows low agreements
among annotators

� Up to now, most (common) metrics rely on lexical similarity,
but it cannot assure a correct evaluation.

� Current work is being devoted to go beyond lexical similarity.
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Learning with structured/distributed representations

Goal Instead of adjusting weights of already existing metrics, we
want to work in a unified learning framework, able to
represent many layers of linguistic information and able to
learn from fine-grained features

� Two alternatives for the input representation

⇒ Structured (with kernel-based learning)

⇒ Distributed (with ANN learning)

� Common setting: pairwise quality comparison
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Differentiating better from worse translation

� Input: 〈t1, t2, r〉
⇒ “Is t1 a better translation than t2, given r”?

� Pairwise ranking setting

⇒ closer to the evaluation that humans do better
⇒ valid for most MT comparison/ranking tasks
⇒ not an absolute quality score
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Learning with preference kernels
Guzmán et al, EMNLP2014

� Tree-based representation of all layers of information

� Pairwise ranking with the preference kernel (Shen & Joshi, 2003)

� Learning example: 〈h1, h2〉 = 〈φM(t1, r), φM(t2, r)〉
⇒ φM makes a structured and relational representation of t and r

⇒ φM(t1, r) = 〈tr1, r t1〉
⇒ two separate trees instead of a graph
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Learning with preference kernels: φM(t, r)
Guzmán et al, EMNLP2014

tr r t

DIS:ELABORATION

EDU:NUCLEUS EDU:SATELLITE-REL

VP NP-REL NP VP-REL o-REL o-REL

RB TO-REL VB-REL PRP-REL DT NN-REL TO-REL VB-REL .-REL ''-REL

not to give them the time to think . "

VP NP-REL NP VP-REL o-REL o-REL

TO-REL `` VB-REL PRP-REL DT NN-REL TO-REL VB-REL .-REL ''-REL

to " give them no time to think . "

a) Hypothesis b) Reference

DIS:ELABORATION

EDU:NUCLEUS EDU:SATELLITE-REL

Bag-of-words relations 

re
la

ti
on

 p
ro

p
ag

at
io

n
 d

ir
ec

ti
on
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Learning with preference kernels (II)
Guzmán et al, EMNLP2014

� Learning example: 〈h1, h2〉 = 〈φM(t1, r), φM(t2, r)〉

� Preference kernel (Shen & Joshi, 2003)

. PK (〈h1, h2〉, 〈h′1, h′2〉) =

K (h1, h
′
1) + K (h2, h

′
2)− K (h1, h

′
2)− K (h2, h

′
1)

. K (h1, h
′
1) = PTK (tr1, t

′r
1 ) + PTK (r t1 , r t

′
1)

. PTK = Partial Tree Kernel (Moschitti, 2006)
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Learning with preference kernels (II)
Guzmán et al, EMNLP2014

� Learning example: 〈h1, h2〉 = 〈φM(t1, r), φM(t2, r)〉

� Preference kernel (Shen & Joshi, 2003)

. PK (〈h1, h2〉, 〈h′1, h′2〉) =

K (h1, h
′
1) + K (h2, h

′
2)− K (h1, h

′
2)− K (h2, h

′
1)

. K (h1, h
′
1) = PTK (tr1, t

′r
1 ) + PTK (r t1 , r t

′
1)

. PTK = Partial Tree Kernel (Moschitti, 2006)
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Learning with distributed representations and NNs
Guzmán et al, ACL2015

f(t1,t2,r) 

ψ(t1,r) ψ(t2,r)h12

h1r

h2r

v
xt2

xr

xt1

t1

t2

r

sentences  embeddings pairwise nodes pairwise features

output layer

� Input mapped to fixed-length vectors [xt1, xt2, xr ] using
syntactic (Stanford’s parser) and semantic embeddings (a la
‘word2vec’)
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Learning with distributed representations and NNs
Guzmán et al, ACL2015

f(t1,t2,r) 

ψ(t1,r) ψ(t2,r)h12

h1r

h2r

v
xt2

xr

xt1

t1

t2

r

sentences  embeddings pairwise nodes pairwise features

output layer

� Hidden layer to compute three types of interactions:
sim(t1, r), sim(t2, r), and sim(t1, t2).
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Learning with distributed representations and NNs
Guzmán et al, ACL2015

f(t1,t2,r) 

ψ(t1,r) ψ(t2,r)h12

h1r

h2r

v
xt2

xr

xt1

t1

t2

r

sentences  embeddings pairwise nodes pairwise features

output layer

� External sources of information as direct features (skip arcs).
We plug in BLEU, NIST, TER, and METEOR scores.
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