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The Impact of Statistical Word Alignment Quality and
Structure in Phrase Based Statistical Machine Translation

by
Francisco Javier Guzmán Herrera

Abstract

Statistical Word Alignments represent lexical word-to-word translations between source and
target language sentences. They are considered the starting point for many state of the art Sta-
tistical Machine Translation (SMT) systems. In phrase-based systems, word alignments are
loosely linked to the translation model. Despite the improvements reached in word alignment
quality, there has been a modest improvement in the end-to-end translation. Until recently,
little or no attention was paid to the structural characteristics of word-alignments (e.g. un-
aligned words) and their impact in further stages of the phrase-based SMT pipeline. A better
understanding of the relationship between word alignment and the entailing processes will
help to identify the variables across the pipeline that most influence translation performance
and can be controlled by modifying word alignment’s characteristics.

In this dissertation, we perform an in-depth study of the impact of word alignments
at different stages of the phrase-based statistical machine translation pipeline, namely word
alignment, phrase extraction, phrase scoring and decoding. Moreover, we establish a multi-
variate prediction model for different variables of word alignments, phrase tables and transla-
tion hypotheses. Based on those models, we identify the most important alignment variables
and propose two alternatives to provide more control over alignment structure and thus im-
prove SMT. Our results show that using alignment structure into decoding, via alignment
gap features yields significant improvements, specially in situations where translation data is
limited.

During the development of this dissertation we discovered how different characteristics
of the alignment impact Machine Translation. We observed that while good quality align-
ments yield good phrase-pairs, the consolidation of a translation model is dependent on the
alignment structure, not quality. Human-alignments are more dense than the computer gen-
erated counterparts, which trend to be more sparse and precision-oriented. Trying to emulate
human-like alignment structure resulted in poorer systems, because the resulting translation
models trend to be more compact and lack translation options. On the other hand, more trans-
lation options, even if they are noisier, help to improve the quality of the translation. This
is due to the fact that translation does not rely only on the translation model, but also other
factors that help to discriminate the noise from bad translations (e.g. the language model).
Lastly, when we provide the decoder with features that help it to make “more informed deci-
sions” we observe a clear improvement in translation quality. This was specially true for the
discriminative alignments which inherently leave more unaligned words. The result is more
evident in low-resource settings where having larger translation lexicons represent more trans-
lation options. Using simple features to help the decoder discriminate translation hypotheses,
clearly showed consistent improvements.
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Chapter 1

Introduction

In the second half of the twentieth century, as people looked for computer assistance in several
intellectual tasks, human attention turned to the automation of natural language processing.
Translating documents between any two languages by a computer was one of the first and
most relevant goals of this field. The aim was to reduce the expensive and time consuming
human translations. Moreover, the dramatic increase in the quantity of produced content,
which has been witnessed in the last couple of decades, has set the role of machine translation
(MT) as a crucial tool for equal information access.

While no current machine translation system is capable of successfully imitating the
behavior of a human translator, various types of existing systems do help to reduce language
barriers. The recent availability of vast amount of human-generated translations and powerful
computers, has enabled the development of new research directions in Machine Translation.
This is specially the case for statistical methods (Brown et al., 1990), which allow the anal-
ysis of parallel text corpora and the automatic construction of machine translation systems.
Statistical Machine Translation (SMT) has proven to be very effective, this is a reason why it
has become the predominant paradigm in the research community.

Although the earlier word-based generative Statistical Machine Translation systems
(Brown et al., 1993) are no longer used, their by-products (word alignments, lexica, fertil-
ity tables) constitute the base for many of the newer models. This is specially the case for
word alignments, which represent the correspondences between the source and target words
of a sentence pair and are used indirectly for estimating the translation model in phrase-based
(Och, 2003; Koehn et al., 2003; Marcu and Wong, 2002) and hierarchical (Chiang, 2005)
systems.

Statistical Word Alignment is the task of finding the correspondences between words in
a source language sentence and the words in a target language sentence. The alignment A of
this pair is simply a set of these correspondences.

In recent years, the increasing availability of human generated word alignments, has
made possible the assessment of alignment quality, using metrics such as Alignment Error
Rate (AER), F-score (Och and Ney, 2003), etc. As a result, there have been several ef-
forts to improve the performance of word alignments. Moreover, those annotated alignments
have also enabled the development of discriminative word alignment models (Ittycheriah and
Roukos, 2005; Blunsom and Cohn, 2006; Niehues and Vogel, 2008; Lambert et al., 2009)
which are tuned towards these quality metrics.

1
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Despite the improvements reached in alignment quality, there has been a modest im-
provement in the performance of end-to-end translation. Some authors (Fraser and Marcu,
2007) have found that AER and translation quality (as measured by the BLEU metric (Pap-
ineni et al., 2002)) do not correlate well. Moreover, it has been observed that under certain
situations, lower alignment quality can lead to improvements in translation quality (Vilar and
Ney, 2006). However, little attention has been given to the fact that in phrase-based systems,
word alignments undergo a series of steps (e.g. heuristic-based phrase extraction) which result
in a loose link between the word-alignment and the phrase-based translation models.

For phrase-based SMT, there have been few efforts to understand how alignment quality
affects the translation models (Ayan and Dorr, 2006; Lopez and Resnik, 2006). Until recently
(Guzman et al., 2009; Lambert et al., 2009), little or no attention was paid to the structural
characteristics of word alignments (e.g. unaligned words, number of links, etc.) and their
impact in further stages of the phrase-based SMT pipeline. As a result, the role of word
alignment on phrase-based systems has been only partially understood.

A better understanding of the relationship between word alignment and the entailing
processes will help to identify the variables across the pipeline that most influence translation
performance and can be controlled by modifying word alignment’s characteristics. Addition-
ally, it will allow to develop better alignment assessment metrics, enabling for word alignment
developments to carry through the pipeline. By doing so, it will help to close the gap between
word alignment and translation performance. In summary, the better the understanding of the
processes, the better the resulting translation quality.

In this document, we advocate for the analysis of alignment structure as one important
contributor to Machine Translation performance. To that end, we perform an in-depth deep
study of the impact of the characteristics of statistical word alignments at different stages of
the phrase-based Statistical Machine Translation pipeline, namely word alignment, phrase ex-
traction, phrase scoring and decoding. Moreover, we estimate multivariate prediction models
for different variables phrase tables and translation hypotheses using alignment structure and
other alignment variables as predictors. These models describe how variations in characteris-
tics of word alignments will affect a phrase-based translation model and how those variations
in the model will influence translation. Finally, we use the knowledge obtained from those
models to propose alternatives for better alignment training, decoding and ultimately transla-
tion quality.

The remainder of this chapter is structured as follows: In Section 1.1, we provide a
closer look to the problem of discrepancies between word alignment quality and translation
quality that have been observed in previous studies. In Section 1.2, we present our initial
hypothesis and a set of research questions. Next, in Section 1.2 we present a summary of
the contributions of this dissertation, followed by the proposed methodology in 1.4. Later
in Section 1.5 we state the limitations of this work. Finally in Section 1.6 we provide the
organization of the body of this dissertation.

1.1 General Problem Statement
Statistical word alignments serve as a starting point for the Statistical Machine Translation
(SMT) pipeline. Improving their quality has been a major focus of research in the SMT
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community. One of the first attempts to bring attention to this matter was (Och and Ney,
2003) where they evaluated several word alignments produced by different aligners. To that
end, they proposed metric AER which remained as the standard for reporting improvements
in alignments. What followed then, was a series of developments from several teams aiming
for better alignment quality. In this section, we introduce different works that have analyzed
statistical word alignment quality and its impact in Machine Translation. First, we present the
work that focused in describing Machine Translation quality in terms of alignment quality.
Then, we present studies aiming to explain the effects of alignment quality in the phrase-
based MT pipeline. Finally, we present some recent studies which aimed to describe the
effects of alignment structure in Machine Translation.

1.1.1 Alignment Quality vs. Translation Quality
The increasing availability of human annotated data has made possible to develop supervised
or discriminative algorithms that maximize the alignment quality as prescribed by AER. Many
of such methods emerged and continue to emerge (Ittycheriah and Roukos, 2005; Blunsom
and Cohn, 2006; Niehues and Vogel, 2008; Lambert et al., 2009) achieving good results in
alignment quality. Despite the ever increasing alignment quality achieved by several systems,
end-to-end translation quality improvements derived from such increasing quality remained
small in the best of cases. This was first pointed out by Fraser and Marcu (2007), who ob-
served that SMT translation quality as measured by BLEU metric (Papineni et al., 2002),
did not correlate well with AER. In their study, they performed several regression tests and
concluded that there were several flaws with the AER (e.g. the inclusion of possible links),
that prevented achieving a good correlation between AER and BLEU. As a consequence, they
encouraged the use of variations of the F-measure (instead of AER) that could be tuned to
favor precision or recall to achieve a better correlation. Since their results were sensitive to
the different language pairs they studied (i.e. French-English, Arabic-English and Romanian-
English), they proposed to tune the modified F metric accordingly to obtain better correlation
with BLEU. Although this study was indeed revealing, the proposed solution to the under-
lying problem is too cumbersome to implement in day-to-day developments. It also falls
short to take into account other structural characteristics of the alignment (which could ex-
plain the variation across the language pairs). One of the recommendations they made, which
was quickly adopted across the community, was to report a translation quality assessment in
addition to word alignment quality.

Similarly, other studies revealed mismatches between BLEU and AER. Vilar and Ney
(2006) had observed that improvements in translation quality could be achieved by degrading
alignment quality. For instance, alignments that were modified by hand to take into account
specific linguistic phenomena of German, scored lower AER but helped to improve translation
quality in the long run. Although some of the conclusions from this study might seem flawed
given its premise (i.e. lower AER gives better BLEU) there are some interesting remarks
that are worth mentioning. First, they back up the use of AER as a alignment quality metric.
Second, they point out that the mismatch between alignment quality and translation quality
is due to the mismatch between alignment and translation models. This is one of the first
acknowledgements that there might be something in between alignment and translation that
could be accountable for the disparity.
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The main criticism that can be raised to these previous studies is that they regard the
SMT pipeline as a ”black-box” where there is one input (i.e. alignment quality) and one
output (i.e. translation quality). That assumption ignores the series of processes that occur
after a word alignment is obtained, which oversimplifies the current situation. For example,
in phrase-based translation, those entailing processes are model estimation and decoding.

1.1.2 Alignment Quality and the SMT Pipeline
The first studies to analyze in detail the impact of alignment quality in the model estimation
and decoding phases are (Ayan and Dorr, 2006; Lopez and Resnik, 2006).

Ayan and Dorr (2006) presented an in-depth analysis of the quality of the alignments as
well its effect in resulting phrase tables. Their analysis compared several types of alignments,
their quality, and the translations from the resulting phrase tables in different scenarios. They
also took into account the indirect effects of alignment structure through lexical weightings.
They also performed an extensive analysis on the length of phrases used by the decoder and
the phrase-table coverage. In their study, they shed light on the behavior of different types of
alignments. For example, they realized that recall oriented alignments (which trend to have
more links) yield smaller phrase tables. Similarly, precision oriented alignments, which are
sparser, yield larger phrase tables. Furthermore, they analyzed different phrase extraction
configurations based on the structure of phrase pairs (i.e. tight vs. loose phrases). In their
view, loose phrases refer to phrase-pairs whose either source or target boundary words (either
beginning or end of phrase) are unaligned. Tight phrases are the opposite. In addition, they
proposed the Consistent Phrase Error Rate Metric (CPER) which is similar to AER but oper-
ates at the phrase level. CPER compares the phrase table extracted from an alignment to the
one generated by a hand alignment. However, the underlying assumption, that the extracted
phrases from the hand aligned data using the current phrase extraction algorithms is perfect,
could be challenged.

While being one of the most complete studies done to analyze the SMT pipeline, they do
not directly analyze structural characteristics of the alignments that impact the configuration
of a phrase-table such as the number of unaligned words or number of links. Instead, these
alignment variables get obfuscated inside of quality measurements such as precision or recall.
Therefore many of their conclusions could be challenged (e.g. more links in the alignment
equals fewer extracted phrase pairs in the phrase table). However, they are the first to suggest
that the characteristics in the alignment play a crucial role in the upcoming stages of the SMT
pipeline.

In a different study, Lopez and Resnik (2006) analyze variations in the translation search
space of the decoder by having alignments of gradually degraded quality. Their alignments
are all obtained using the same aligner (GIZA++) and training data. However, they achieve
variations in quality (precision, recall, F-score) by segmenting the data into chunks of varying
sizes to obtain noisy alignments. While their study proposes an interesting methodology for
evaluating the impact of alignments in the configuration of a decoder’s search space, features
and weightings; their conclusions are limited by the initial setup of the experiment. In that
sense, what they end up measuring is not the effect of quality (F-score, precision or recall)
into the decoder variables but rather the effect of training sizes in the latter (alignment quality
being a result of that).
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1.1.3 Impact of Alignment Quality and Alignment Structure on Trans-
lation Quality

Later studies (Guzman et al., 2009; Lambert et al., 2009) have brought closer attention to the
structure of word alignment and their implications in following stages of the SMT pipeline.
For instance Lambert et al. (2009), analyze the effect of the number of links of different types
of alignments including its repercussions on the size of phrase tables and the ambiguity of
the translation model. They also propose new structural metrics for alignments such as link
length, distortion and crossings.

Likewise, the work we presented in (Guzman et al., 2009) analyzes several alignment
characteristics and their impact on the extracted phrase pairs. In this study we observed that
alignment structure has a large impact on the phrase-translation model. For instance, we
discovered that the number of unaligned words in an alignment has an important effect in the
size and configuration of the phrase-table. Furthermore, we showed that the distribution of
unaligned words inside a phrase pair (also known as gaps) and the distribution of unaligned
words in the alignment are highly correlated and is not affected by the heuristic extraction.
Additionally, by performing a manual evaluation of Chinese-English phrase pairs, we made
two interesting observations: First, better quality alignments (i.e. human annotated data) yield
better human perceived quality phrase pairs. Secondly, phrase pairs with a higher proportion
of unaligned words show lower human perceived quality. Also, by including a set of features
to the decoder that take into account the number of gaps inside a phrase-pair, we were able to
obtain significant improvement in translation quality.

In this dissertation we extend those studies and focus on describing how alignment struc-
ture impacts Machine Translation. For instance, we use a myriad of measures for alignment
structure that represent alignment sparsity (Guzman et al., 2009; Lambert et al., 2009)) and
distortion (Lambert et al., 2010). We also analyze variables that comprehend the coverage and
model ambiguity of a translation model (Ayan and Dorr, 2006) and other characteristics. Fi-
nally, based on our observations, we propose new alignment metrics and design new decoding
features as suggested by Lopez and Resnik (2006) based on the alignment structure.

1.2 Hypothesis and Research Questions
The main hypothesis of this study can be summarized in the following way:

Alignment structure has a large impact on the characteristics of the resulting translation
model. Hence, it should also have a large impact on Machine Translation performance.
Thus, by controlling the impact of alignment structure we will be able to improve Ma-
chine Translation performance.

By dissecting this hypothesis, we can identify three parts:

1. The impact of alignment structure on the translation model
The first part of our hypothesis states that alignment structure determines greatly the
characteristics of the resulting translation model. In other words, we hold that transla-
tion models are dependent upon the alignment structure.
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2. The impact of alignment structure of the translation model on MT performance
The second part of our hypothesis states that alignment structure differences yield dif-
ferent translation models that result in differences in translation quality.

3. Providing means to control alignment structure will result in improvements in MT
performance
The last part states that by controlling alignment structure, we will be able to improve
machine translation quality.

Following our hypothesis, there are several questions that arise and need to be answered
as we progress in our study.

� Which variables describing word alignments, translation models and translation hy-
potheses that we are going to include in this study?

� Which are the structural variables that are most important to our translation model?
Which ones are more important to translation quality? Do the importance of the vari-
ables describing translation quality vary depending on the translation task?

� Which model or multivariate technique should be used to build our model? Should it
be linear only or should we use higher order modeling? Should we allow for latent
variables?

� How do we control alignment structure for Machine Translation?

� Which type of multivariate analysis better suits our scenario?

� How are we going to deal with undesired effects in multivariate analysis such as collinear-
ity?

� How do we compare predictive models? How do we evaluate their robustness?

1.3 Contributions
In this dissertation, we perform an in-depth study of the impact the structure of word align-
ments at different stages of the phrase-based Statistical Machine Translation pipeline, i.e.
phrase extraction, phrase scoring and in decoding. We present different multivariate models
that highlight the impact of alignment structure on phrase-based translation model esti-
mation . Furthermore we test their robustness against unseen data from different language
pairs. By using a multivariate approach (as opposed to simple correlation analysis) we take
into account the effects of several variables simultaneously.

Moreover, we also establish a multivariate model including different phrase tables and
first-best translation hypotheses, that predict how variations in the translation model pre-
dict translation quality. Highlighting the importance of the translation model and the align-
ment structure associated with it.

Finally, we identify the most important structural alignment features that influence trans-
lation quality and use the information to provide better alignment training and translation
modeling which ultimately results in better translation quality.
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1.4 Methodology
In this section, we briefly summarize the methodology used in this dissertation. It is divided
into four parts, each reflecting the contents of a chapter of this dissertation.

1.4.1 Exploratory Analysis
In Chapter 3, we present the results of a study we presented in (Guzman et al., 2009) and
some of the intuitions developed in (Guzman et al., 2011). In this chapter we perform an
exploratory analysis of different alignment variables, including quality and structure, and de-
velop an intuition of how they impact the phrase-based translation model.

� Analyze the different variables in the alignment (quality and structure) taking into ac-
count alignment density characteristics.

� Analyze the phrase-tables (translation-model) and their characteristics.

� Observe the relationship between alignment structure and the phrase-translation model.

� Perform a user-based study to determine the impact of alignment structure on phrase-
quality.

1.4.2 Predicting the Translation Model
In Chapter 4, we present a study built upon linear regression models. This study, allowed us
to identify the most important structural variables and their effects in the consolidation of a
translation model. In this chapter we perform the following:

� Analyze different alignment quality and structure variables, including alignment spar-
sity.

� Perform a multivariate correlation analysis using clustering.

� Build linear regression models to predict the most important characteristics of a trans-
lation model.

� Test our models against unseen data and evaluate the results.

1.4.3 Predicting Translation Quality
In Chapter 5, we present a study where we identify the most important variables of the trans-
lation models and the translations, and how are they related with translation performance.

� Perform multiple translation experiments and measure translation quality and structure
characteristics of the phrase-translation models.

� Build predictive models using feature selection to discriminate the most important fea-
tures.

� Test the models against unseen data.

� Build alternate models for specific translation task domains.

� Identify the variables that most impact translation performance.
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1.4.4 Improving Translation Using Alignment Structure

In Chapter 6, we propose new training alternatives to incorporate alignment structure in align-
ment training and decoding.

� Propose several alignment tuning metrics that take into account more of the alignment
structure.

� Benchmark the translation improvements resulting from those metrics.

� Propose new decoding features that incorporate alignment structure.

� Benchmark the translation improvement resulting from those decoding features.

� Use the features in low-resource situations to improve translation performance.

1.5 Limitations

In order to keep the development of this study in a manageable time frame, there are several
restrictions that we applied.

� The set of language pairs used for experiments will be fixed.

Given the difficulty and time consuming process for SMT training, the only language
pairs that will be addressed will be Spanish-English, for estimating the multivariate
predictive models and Chinese-English, Arabic-English, to evaluate the generality of
such model (i.e. how robust it is to different language pairs).

� We will use a set of generative and discriminative alignments for analysis.

In this analysis we will only employ standard symmetrized alignments, provided by
GIZA++ (Och, 2000) plus heuristics, and discriminative alignments with varying set-
tings provided by the DWA (Niehues and Vogel, 2008).

� Phrase-extraction heuristic parameter will be fixed (to default max-length 7).

While the max-length parameter has been observed to have an effect on the size of the
phrase table, allowing for longer phrases is too expensive memory wise.

� For the decoding experiments, we will be using the Moses decoder (Koehn et al., 2007).

� We will use linear models because we want to privilege interpretation rather than higher
accuracy. Furthermore, by using feature selection (via stepwise regression) instead of
other mechanisms that cope with higher dimensionality, we will also privilege the model
interpretation.

� Other particular settings of the experiments will be specified in the Experimental Setup
in Appendix A.
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1.6 Thesis Organization
The remainder of this dissertation is distributed as follows: in Chapter 2, we introduce some
of the concepts of Statistical Machine Translation and Phrase Based Machine Translation that
we will be using in this document. We pay special attention to statistical word alignment and
to the training pipeline of phrase-based Statistical Machine Translation.

Next, in Chapter 3, we present an exploratory study where we observe the effects of sta-
tistical word alignments in the estimation of the phrase-translation model. There, we present
experiments where we perform alignment experiments with different aligners and compare
the output. Then using the same aligners, we obtain translation models and compare them.
Additionally, we perform a hand-assessment of the generated phrase-pairs to measure their
quality.

In Chapter 4 we present a predictive model for the phrase-table characteristics based on
the alignment variables. We highlight the importance of alignment structure in determining
the characteristics of the translation model, from structure (size, coverage, etc.) to translation
entropies.

In Chapter 5 we use the characteristics of a phrase-table and the characteristics of the
first-best translations to predict translation quality. We perform translation experiments for
different translation models, and evaluate the translation quality using different metrics. Fur-
thermore, we build models that predict translation quality depending on the translation task.

Next, in Chapter 6 we use the information from alignment structure to improve Statis-
tical Machine Translation. For instance, we take into account alignment structure to propose
two new alignment metrics. Then we train aligners to maximize those metrics and compare
the generated translation models. Furthermore, we compare the translation outputs of such
aligners. Additionally, we propose new decoding features based on the alignment gaps. We
use them in different settings and compare the translation results.

In Chapter 7, we summarize the findings of this dissertation. We revisit the hypothesis
and the research questions and provide answers. Finally, we discuss the future work, were we
discuss enhancements to the current study.





Chapter 2

Background

In this section, we introduce some concepts that are essential to the understanding and devel-
opment of this proposal. First, we will start by presenting the basics of Machine Translation
(MT). Then, we will introduce the main components of a Machine Translation system: lan-
guage model, translation model and decoder. Next, we will discuss the main steps involved
in model the phrase-based translation model estimation. Finally we will discuss the topic of
performance in Machine Translation.

2.1 Introduction to Statistical Machine Translation
Machine Translation (MT) or computer assisted translation is the automatic translation of
text or speech from a source natural language like Spanish to a target language like English,
using a computer system. Despite being one of the most important applications of Natural
Language Processing, it has long been considered a hard problem (Manning and Schütze,
1999). Although the ideal goal of MT systems is to produce high-quality translation without
human intervention at any stage, in practice this is not possible except in constrained situations
(Hutchins, 2003) where translation tasks are limited to small sub-language domains (Jurafsky
and Martin, 2007).

Historically, MT systems have been classified in accordance to the level of analysis
of the source language. Roughly, three categories have been long defined: Direct Systems
which include little or no syntactic analysis; Transfer Systems, based on syntactic parses; and
Interlingua Systems based on a deep semantic analysis. For a more detailed description of
each one of these architectures, please refer to: (Jurafsky and Martin, 2007; Hutchins, 2003;
Somers, 2003).

Along with the different architectures, there are different paradigms that have been
adopted by researchers in order to build their systems. Most of the systems using the transfer
architecture are known as Rule Based systems, because of the linguistic rules used to translate
one source language syntactic tree into a target language syntactic tree. This was the dom-
inant paradigm until the 1990s, when the availability of large amounts of human translated
texts gave rise to the corpora-based or empirical paradigms. Examples of these paradigms
are the Example Based Machine Translation (EBMT) and the Statistical Machine Transla-
tion (SMT), which will be the focus of this thesis. More specifically, we will address the

11
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translation model estimation in the phrase-based Statistical Machine Translation (PBSMT).

2.2 Principles of Statistical Machine Translation
The core idea of Statistical Machine Translation (SMT) is that we can estimate the probability
of a source language sentence of being translated into another a target language sentence by
analyzing parallel data (i.e. collections of human generated translations) . It was first proposed
by Brown et al. (1990) at IBM and became widely popular because it outperformed other MT
paradigms.

SMT has proven to be very robust and flexible, because it is not bound to any specific
source-target language pair. However, it relies heavily on the training procedures used to
estimate its models as well as the nature and availability of the training data.

In its pure form, SMT makes no use of linguistic data. Instead, it models the probability
of a source language sentence f of being translated into a target language sentence e1 and
looks for the translation that maximizes such probability. This can be depicted in the following
equation:

ê = argmax

e

p(e|f) (2.1)

Using Bayes rule, this formula can be transformed into:

ê = argmax

e

p(f |e)p(e)
p(f)

(2.2)

Note that p(f) is a normalization factor, and because of the argmax this equation can
be rewritten as:

ê = argmax

e

p(f |e)p(e) (2.3)

This equation is known as the noisy channel model for translation.

2.2.1 Noisy Channel Model
The noisy channel model has been long used in areas such as speech recognition. In SMT,
the channel metaphor is applied as follows: we pretend that we originally had a target lan-
guage sentence e which then was corrupted by noise and transformed to a source sentence f .
Therefore, we need to find the target sentence e that f is more likely to have arisen from.

Although modeling the translation probability p(f |e) is not easier than modeling p(e|f),
this rewriting ensures that our target translation e has both fluency (i.e. that it is good English,
ensured by the language model p(e) ) and has fidelity (i.e. that it is true to the original meaning
in the source language sentence f , as modeled by the translation model p(f |e) ). Meeting both
criteria is difficult. In some cases, to achieve more fluency, the fidelity is sacrificed. Therefore
we have to focus in maximizing both criteria simultaneously. This search procedure is widely
known as decoding and is taken into account by the argmax of the equation. Figure 2.1

1for historical reasons, f was used to denote French and e to denote English
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Figure 2.1: Three components in Classical SMT: Language Model, Translation Model and
Decoder

depicts the interaction between these three components for a scenario where we want to trans-
late from Spanish to English. The Language Model is estimated by doing statistical analysis
on some monolingual corpus (e.g. large collections of English documents). The Translation
Model is estimated based in bi-texts or collections of translations (e.g. Spanish/English). The
Decoder is a piece of software that uses both models to provide English translations to unseen
Spanish translations.

In the following sections, we will describe the main characteristics of the Language
Model and the Translation Model (more specifically, the phrase-based). Later, in Section 2.6,
we will discuss in depth the decoding procedure for phrase-based models.

2.3 Language Model Estimation

As we mentioned before, the language model (lm), gives us an idea of how fluent a target
language sentence e is. It can be regarded as the probability that the words are correctly
combined in the target language. They are usually computed via the probabilistic grammars
called n-grams.

2.3.1 N-grams

N-gram models are closely related to the problem of word prediction where given a sequence
of words, we need to predict the most likely word to complete the succession. Making use of
the Markov assumption, which states that only the local context affects the next word, n-gram
models use the previous N � 1 words to predict the next one (Jurafsky and Martin, 2007).
Therefore a bi-gram (or 2-gram) would use the previous word to predict the next word. A
trigram, would use the previous two words, and so on. For instance, to calculate the language
model probability for the English phrase the white house with a bi-gram model would be:

p(the white house) = p(the)⇥ p(white|the)⇥ p(house|white) (2.4)
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The previous example reads as follows: the probability of observing the construction the white
house is equal to the probability of observing the times the probability of observing the fol-
lowed by white times the probability of house coming right after white.

The simplest way to compute n-gram probabilities is by counting the frequencies of the
sequences in a corpus. This is called the Maximum likelihood estimate (MLE). For instance,
to determine the probability of house coming right after white, we would have to count the
occurrences in the corpus in the following way:

p(house|white) =
C(white house)

C(white)
(2.5)

where C(x) stands for counts of word x.

2.3.2 Smoothing Techniques
Unfortunately MLE has the problem of not being able to deal with sparse data. Therefore, if
during training we did not observe the occurrence of a given n-gram, it would be given a zero
probability. To overcome this, some methods of “discounting” or “smoothing” are applied.
These methods arrange for a certain amount of probability to be distributed among the unseen
events, so the distribution is smoother. Some examples are the Good-Turing estimate(Chen
and Goodman, 1998) and the Kneser-Ney discounting (Ney et al., 1994).

Higher n-gram models will be a better predictors of the following words because they
have more context information. Thus, in MT it is desirable to use higher n-gram models. The
major drawback is that the higher the n-gram size, the more sparse the distribution is. To
overcome this problem, we can make use of back-off models. Simplifying, back-off models
allow us to turn to a lower n-gram model whenever a higher n-gram model fails (i.e. we had
no count for such n-gram). Another strategy that helps us to combine several n-gram models
is called the deleted interpolation, which linearly combines the probability of several n-grams
models under the restriction that the linear coefficients add up to 1.

2.3.3 Estimation
While Language Models are crucial to Machine Translation, estimating a language model is
not a frequent practice due to the amount of time and computational resources involved in the
process. Instead, we often compute a single target language model (i.e. for English) and use
the same for different MT Systems only updating the model when strictly necessary (large
amounts of new monolingual data available). For instance, in several of the experiments in
this thesis are carried using the same language model and only changing the translation model.

2.4 Phrase Based Translation Model
Under the noisy channel framework, the translation model p(f |e) is the probability that a
target language e sentence has arisen from the source language sentence f . Translation models
give us an idea of the faithfulness of a translation, and it constitutes the core component in
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a Machine Translation System. There are many approaches to calculate this model. In this
section, we will briefly discuss the state of the art phrase-based models.

2.4.1 Phrase Based Motivation
It has been observed that words that form phrases in the source language tend to cohere in the
target language. In other words, there are collections or chunks of words that appear next to
each other in the source language, whose translations appear as chunks of words in the target
language (fig. 2.2). This is the main idea behind phrase-based statistical machine translation.
In phrase-based models, the unit of translation is a contiguous sequence of words known as
phrase. However, this unit of translation does not imply a syntactic structure.

During decoding, phrases are translated as a whole, and then moved to their final po-
sitions in the target language by a reordering process. By using phrases instead of words,
we capture some local context (e.g. literal translations, idioms), and reduce the number of
permutations needed in the final reordering.

The principles of phrase-based SMT (PBSMT) models can be traced back to the tem-
plate alignments proposed by Och et al. (1999). However the term was coined later by the
method proposed by Koehn et al. (2003), which was popularized by the Pharaoh decoder
(Koehn, 2004a) and its later successor Moses(Koehn et al., 2007).

Figure 2.2: Phrase-based models take advantage of the fact that some words often move as
units during translation. This is the principle that motivated PBSMT. From (Koehn, 2004a)

2.4.2 PBSMT Principles
The generative story of phrase-based models can be summarized in the following way: The
sentence f is segmented into a sequence of I phrases ¯f I

1 . Every possible segmentation is
assumed to be equally likely. Then each foreign phrase ¯f

i

in ¯f I

1 is translated to an English
phrase ē

i

with the phrase translation probability �( ¯f
i

|ē
i

). Also, the English phrase may be
reordered with a distortion probability d.

A distortion model d is used to penalize large reorderings by giving them lower probabil-
ities. For example, in a relative distortion model (there are many others), distortion probability
refers to the probability of the translations of two consecutive source language phrases being
separated in the target language by a span of a particular length. Thus, relative distortion is
parameterized by d(a

i

� b
i�1) where a

i

is the start position of the target phrase generated by
¯f
i

and b
i�1 is the end position of the phrase generated by ¯f

i�1.
Summarizing, the original phrase-based translation model using this settings can be de-

composed into:
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p( ¯f I

1 |ēI1) =
IY

i=1

�( ¯f
i

|ē
i

)d(a
i

� b
i�1) (2.6)

To better illustrate this, consider the translation example in fig. 2.3.

Position 1 2 3 4

Spanish la casa en donde vivo es blanca
English the house where I live is white

Figure 2.3: An example of a translation generated from the Spanish sentence la casa en donde
vivo es blanca

In this example, the segmentation proposed divides the source sentence into four phrases.
Each phrase is then translated to English and reordered. For this particular example, every En-
glish phrase falls into the same position as its Spanish counterpart, leaving all the distortions
equal to 1. Therefore the translation probability for this segmentation can be computed as
follows:

p( ¯f I

1 |ēI1) = �(la casa | the house)⇥ d(1)⇥ �(en donde vivo | where I live)⇥ d(1)

⇥�(es | is)⇥ d(1)⇥ �(blanca |white )⇥ d(1)

Whether this translation or this segmentation are chosen, depends on how good is its proba-
bility in regard to other translation hypotheses.

There are many other ways to calculate a translation model. Variations in how we model
distortion or � can make a difference. In fact, the use of a log-linear framework, can allow
for a translation model to use many other arbitrary phrase-features. This shall be discussed
later, in the decoding section (Section 2.6). At this moment, we will discuss how the phrasal
translation probability � is estimated.

2.4.3 Estimating the Model
One issue that comes with the formulation of the phrase-based approach is how to calculate
the phrase probabilities like �( ¯f |ē). If we had a phrase-level aligned bi-text (where chunks of
source words were explicitly associated to chunks of target words), it would suffice to count
frequencies and establish a maximum likelihood estimate. However this is not the case. We
need to find the phrases which are translation of each other directly from the corpus.
There are different types of phrase-based models (e.g. (Marcu and Wong, 2002; Koehn et al.,
2003)) and each has its own way of estimating phrasal probability �. On one hand Marcu and
Wong (2002) estimates phrasal probability directly from the corpus using unsupervised meth-
ods. On the other hand Koehn et al. (2003) uses heuristics to extract phrases from word align-
ments. In this work, we will be using the latter approach, which has been well spread through
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the community thanks to the open source phrase-based Pharaoh system (Koehn, 2004a) and its
later successor Moses decoder (Koehn et al., 2007). In the following section we will introduce
the main steps involved in the estimation of this type phrase based translation model.

2.5 PBSMT Training Pipeline
From raw training data to translation model, the entire pipeline can be pictured in Figure 2.4.
There are at least four important steps: Preprocessing, Word Alignment, Phrase Extraction
and Phrase Scoring. Below, we provide a description of each of these stages.

Figure 2.4: Pipeline of Phrase-Based Translation Model Estimation. First we clean the raw
training data by preprocessing. Then we estimate statistical word alignments (in a generative
or discriminative way) to generate symmetrized alignments. Then we use phrase-extraction
to obtain prase-pairs that are consistent with the word alignments. Finally we estimate the
probabilities of phrase-pairs using maximum likelihood.
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2.5.1 Preprocessing

The preprocessing step focuses on cleaning the bilingual corpus and preparing it for the model
estimation. This is as important step, as it allow to filter for undesired characters, html tags,
etc. Also some engineering choices can be carried: tokenization (i.e. how to split words),
segmentation (i.e. which morphological criteria to use), case (i.e. use truecase or lowercase),
number tagging, etc.; to help models to carry a better estimation. In Figure 2.5 we observe an
example of preprocessing.

< td > La casa es blanca. < /td >
El teatro queda a dos calles hacia el norte.
Ella tiene un < em > libro de polı́tica <
/em > internacional.
El agua es clara y frı́a.
Dejó su abrigo en la recepción.

la casa es blanca .
el teatro queda a dos calles hacia el norte .
ella tiene un libro de polı́tica internacional .

el agua es clara y frı́a .
dejó su abrigo en la recepción .

(a) before processing (b) after processing

Figure 2.5: An example of preprocessing. The text is modified to discard unwanted characters
(e.g. html tags). Also, it can be lowercased, tokenized and segmented.

2.5.2 Word Alignment

During the word alignment (WA) stage, the likelihood of word-to-word translations are es-
timated and encoded as alignments. Alignment model estimation is a complex process but
crucial to the phrase-based model estimation and to this thesis. Therefore, below we provide
a brief introduction to Word Alignment.

Introduction to Statistical Word Alignment

In order to estimate most statistical translation models, it is needed to find the correspondence
between the source and target language words in training the sentences of our bitext. These
correspondences are known as word alignments and represent the lexical (word-by-word)
translations. An example of an alignment can be pictured in fig. 2.6. In the image shown,
each source language word has a correspondence with a target language word: hla k hei , hcasa
k housei , hes k isi, hblanca k whitei. Of course, there could be other possible alignments or
mappings between the source and target words, for example hla k whitei, hcasa k thei, hes k
housei, hblanca k isi.

More formally, Statistical Word Alignment is the task of finding the correspondences
between words in a source language sentence (f I

1 = f1 . . . fI ) and the words in a target
language sentence (eJ1 = e1 . . . eJ ) in which the source and target sentences contain I and J
words, respectively . The alignment A of this pair is simply a set of these correspondences.
We say that A ⇢ {1, 2, . . . , I} ⇥ {1, 2, . . . , J}. If (i, j) 2 A, then the ith source word is
aligned to the jth target word. Also, it is said that there exists a link between words (i, j).
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Alignment Models

There have been several approaches to find alignments in a corpus. First, the unsupervised or
generative models (Brown et al., 1993; Vogel et al., 1996) , which model the alignment as a
hidden variable, and try to discover their likelihoods using machine learning algorithms such
as the Expectation Maximization or the forward backward algorithm. Second, the heuristic
models (Melamed, 2000; Kobdani et al., 2009), which estimate the likelihood of an alignment
according to word-distance and other metrics. Lastly, supervised or discriminative models
(Ittycheriah and Roukos, 2005; Blunsom and Cohn, 2006; Niehues and Vogel, 2008) which
make use of human annotated data (word alignments done by humans also known as hand
alignments) to learn a model according to specific features.

Generative Models
In the original word based SMT, we model the best translation using the noisy channel
approach, where we use a translation model p(f I

1 |eJ1 ) to calculate the probability of
one sentence in the source language f I

1 of being the translation of the target language
sentence eJ1 . In this formulation, an alignment aI1 represents a function (mapping) which
given a source side position, returns a target language position. For instance if in the
current alignment aI1 the word source word f3 is linked to e8 then a3 = 8. While this
model helps estimation, it makes this type of models asymmetrical, because one source
word can at most be linked to one target word, while a target word might be linked to
two or more source words.

To calculate p(f I

1 |eJ1 ) we need to consider every possible mapping in our calculation.
To do so, we assume that every alignment is possible (i.e. any word f

i

can be linked to
any word e

j

). Then, we treat the alignments as hidden variables and we sum over every
possible alignment.

p(f I

1 |eJ1 ) =
X

a

I
1

p(f I

1 , a
I

1|eJ1 ) (2.7)

Generative models have the advantage that they are well suited for a noisy-channel ap-
proach. They use unsupervised training to estimate p(f I

1 , a
I

1|eJ1 ) using large amount of
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Figure 2.6: A simple example of word-alignment. Here, each source language word has a
correspondence with a target language word: hla k hei , hcasa k housei , hes k isi, hblanca k
whitei
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unlabeled parallel data. There have been several generative models that were proposed
by Brown and his colleagues at IBM (Brown et al., 1993). Therefore they are widely
known as the IBM models. Another widespread model is the HMM alignment model
proposed by (Vogel et al., 1996). Each model has an increasing level of complexity. In
the Table 2.1, we show the most important features of each model.

Model Main features

IBM1 lexical probabilities only
IBM2 lexicon plus absolute position distortion
HMM lexicon plus relative position distortion
IBM3 plus fertilities
IBM4 inverted relative position alignment
IBM5 non-deficient version of model 4

Table 2.1: Summary of main generative alignment models and their main characteristics

Lexical probabilities are the likelihood that one word in the source language be trans-
lated to another word in the target language. Distortion is a penalization for less likely
alignments which try to align words that are too far apart. Fertility helps us to provide
a mechanism with which a single target language word can be regarded as generating
several source language words.
Since higher order models are more complex, a common procedure is to use the esti-
mations from lower order models as priors. E.g. to train IBM1 to determine lexical
probabilities and then use them as initialization for HMM, and so on. This is known as
bootstrapping.

GIZA++
All standard alignment models (IBM1...IBM5, HMM) have been implemented in the
GIZA++ toolkit. This toolkit was started at John Hopkins University workshop 1998
and later extended by Och (2000). It is widely used by many groups and included in
many translation toolkits such as Moses Decoder. Newer multi-threaded adaptations
(Gao and Vogel, 2008) are also now in use.

Viterbi Alignments
In order to obtain a word alignment for the I words in f I

1 to the J words in eJ1 using the
estimated models, one needs to perform a search among all possible mappings aI1 for
the that maximizes the likelihood of the model M in question.

âI1 = argmax

a

I
12A

pM(aI1, f
I

1 |eJ1 ) (2.8)

In other words, we choose the alignment between that maximizes the probability of
the sentence eJ1 of being the translation of the f I

1 , given the probability model pM we
estimated during training. Such alignment âJ1 is known as the Viterbi alignment for eJ1
and f I

1 .
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Symmetrization
Because of how generative approaches model probabilities, certain restrictions apply.
For example, many source to one target word alignments are allowed (modeled by the
fertility), but only one target per source word alignments are permitted. This results in
an inherent asymmetry depending on the direction of the alignment we are performing.
For instance, the alignment obtained from English to Spanish is substantially different
form the alignment obtained from Spanish to English.

Fortunately, there are some heuristic processes that can be performed using the infor-
mation in the source-to-target (s2t) and target-to-source (t2s) alignments to boost the
accuracy of an alignment. These heuristics help to overcome the original weaknesses of
generative models and are very helpful for phrase extraction. Some of these heuristics
include intersection, union, and some other refined heuristics such as grow-diag, grow-
diag-final, grow-diag-final-and (Och et al., 1999; Koehn et al., 2003). Symmetrization
is a challenging procedure. Because of this, different research efforts have focused on
it (Matusov et al., 2004; Liang et al., 2006).

An example of a symmetrization using a union heuristic is depicted in fig. 2.7.

�� �� �� ���� �� �� ��

��

��

��

��

� �
�� �� �� ��

Figure 2.7: Example of a union type symmetrization: Alignments of different directions (left,
middle) are combined to include the links that are present in both (right).

The most used symmetrization heuristics are the grow-diag family of heuristics. We
describe them below.

grow-diag. This heuristic starts by using the intersection of the s2t and t2s align-
ments. Then visits each of the links (i, j)

I

in the intersection and adds any link
(i± 1, j ± 1)

U

in the union of s2t and t2s that lies in the neighborhood of the first
link provided that either source i or target j words were left unaligned.

grow-diag-final. This heuristic is based on the grow-diag but uses the final
procedure which consists on visiting each of the unaligned words in e and f . If
there is a link in either s2t or t2s that contains i or j, add it to the final alignment.

grow-diag-final-and This heuristic is based on the previous one, but requires
that both words in i and j are left unaligned before adding any link from s2t or t2s.

We expect to have a natural order in terms of number of links between these heuristics.
In other words: A

I

✓ A
GD

✓ A
GDFA

✓ A
GDF

✓ A
U

.
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Discriminative Models
Generative models are very robust, however they have a major disadvantage: they can
hardly make use of the increasingly available manual alignments. Also, given their com-
plexity, to incorporate other sources of information such as POS tags, word frequencies
etc., is a non-trivial task.

In recent years several authors (Moore, 2005; Taskar and Lacoste, 2005; Blunsom and
Cohn, 2006) have proposed discriminative word alignment frameworks and showed that
this leads to improved alignment quality. In the discriminative alignment approach, we
model p(a|f, e) directly. Therefore, the decision rule for this approach becomes:

â = argmax

ak2A
pM(a

k

|f I

1 , e
J

1 ) (2.9)

where a
k

represents an alignment among the set of all possible alignments A between
the source f I

1 and target eJ1 sentences.

One main advantage of the discriminative framework is the ability to use all available
knowledge sources by introducing additional features. Also, these models trend to be
symmetric in nature, making them suitable for phrase-based machine translation with-
out the need of symmetrization. Finally, discriminative approaches allow to have more
control of how the alignment is modeled, by using specially engineered features.

DWA Aligner
In this study, in addition to the generative models implemented in GIZA++ we will
use the discriminative model presented in (Niehues and Vogel, 2008), which uses a
conditional random field (CRF) to model the alignment matrix. By modeling the matrix,
no restrictions to the alignment are required and even many to many alignments can be
generated. As a result, the model is symmetric, and therefore will produce the same
alignment regardless of the direction in which it is used.

Word Alignment Quality

When analyzing the errors made by the automatically generated word alignments we compare
the aligner output (e.g. Viterbi alignments generated by GIZA++) against a gold standard ref-
erence of consisting of human hand aligned data. In some gold standards, there is a distinction
between Sure and Possible links. Sure links represent the hand alignments made by the anno-
tator for which he is sure of the alignment. Possible links are those which represent a degree
of uncertainty, e.g. were different annotators differ in the manual alignment.

Based on the differences between output alignments and hand alignments, there are
three basic quantities that we can measure: the number of links in which these two alignments
agree, i.e. true positives (tp); the number of links that are present in the output of the aligner
but not in the gold standard, i.e. false positives (fp); and the number of links that are present
in the gold standard, but not in the output of the aligner, i.e. false negatives (fn). There are
several metrics that are used for measuring the quality of a word alignment, but most of them
are based on these three quantities.

Precision
This measure gives us a notion of how accurate is the output of the aligner. It is the ratio
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of the correct to all generated links.

Precision =

tp

tp+ fp
(2.10)

Recall
This measures how well we cover the desired links, i.e. those in the hand alignments,
with the automatically generated ones. That is, of all the links in the gold standard, what
is the amount of links that are also present in the aligner output.

Recall =
tp

tp+ fn
(2.11)

Alignment Error Rate
AER, as defined in (Och and Ney, 2003), takes Sure and Possible links into account.

AER = 1� |A [ S|+ |A [ P |
A+ S

(2.12)

Where A stands for the set of links in the output alignment, S stands for the set of links
in the sure alignments in the reference and P stands for the set of possible alignments
in the reference. However when we only have Sure Alignments, the metric is related to
the F measure :

AER = 1� 2tp

2tp+ fp+ fn
= 1� F (2.13)

2.5.3 Phrase Extraction
In order to estimate phrasal probabilities, we need to find out which phrases are translation
of each other. This is done using word alignments as guidelines to obtain all phrase-pairs h ¯f

i

k ē
i

i that are consistent. Consistency is defined as follows: if the source word f
i

is aligned
with the target word e

j

, then a phrase-pair containing f
i

must also contain e
j

; likewise, a
phrase-pair containing e

j

must also contain f
i

. Phrase pairs containing neither f
i

nor e
j

are
not constrained in any way by the alignment point (i, j). In Figure 2.8, we observe an example
of this criterion.

The process of phrase extraction is done incrementally, starting from phrase-pairs of
length 1 up to a predefined maximal length (usually 7). In Figure 2.9 we observe the process
of phrase extraction incrementally up to length 4.

2.5.4 Phrase Scoring
After all prase-pairs have been extracted, the phrase-based translation model is computed
using a maximum likelihood estimate with no smoothing, as shown in the equation below.

p(ē| ¯f) = count(ē, ¯f)

count( ¯f)
(2.14)
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(b) inconsistent

Figure 2.8: Examples of a consistent (a) and an inconsistent (b) phrase-pair. In (a) the phrase-
pair (a square in black dotted lines) hf2 f3 k e2 e3i has all its words in the source language
aligned to target language words which are part of the same prase-pair. In the second picture
(b) the prase-pair hf2 f3 k e2i is inconsistent given that the word f2 is aligned to e3 which lies
outside the prase-pair.

In this equation, the direct phrasal translation probability feature p(ē| ¯f) is calculated by
counting the number of times that the source phrase ¯f and the target phrase ē belong to the
same phrase-pair, and normalizing by the number of times the source phrase ¯f is extracted
paired to any other target phrase. The learned phrases are then stored in a data-structure
widely known as phrase-table. Phrase-tables usually include the source and target language
phrases, as well as their phrase-translation probabilities, lexical weighting, etc. This works as
a database for the decoder.

source phrase ¯f target phrase ē count ( ¯f ,ē)

la casa the house 17
la casa the household 5
casa es house is 8

casa blanca white house 30
casa blanca house white 11
la cámara the house 120

cámara de diputados house of representatives 125

Table 2.2: A toy example of conditional phrasal translation estimation. In order to estimate
the likelihood of the phrase la casa to translate into the house or p(ê| ˆf) we need to count all
the times we observed such pairing (17) and divide it by the times that we observed la casa
(17 + 5), which results in p(the house |la casa) = 17/(17 + 5) = 0.77. Similarly, p(la casa
|the house) = 17/(17 + 120) = 0.12

2.6 Decoding
Decoding is the process through which we can use the translation and language models to
translate unseen source language sentences into target language. The process consists in a
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(c) third step
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(d) fourth step

Figure 2.9: Phrase extraction example. At each step, the heuristic extracts the phrase-pairs
that are coherent with the alignment. First step (a): hla k thei hcasa k housei hes k isi hwhite
k blancai. Second step (b): hla casa k the housei hcasa es k house isi hes blanca k is whitei.
Third step (c): hla casa es k the house isi hcasa es blanca k house is whitei. Fourth step (d):
hla casa es blanca k the house is whitei.

search for the best candidate translation. Modern decoders use the log-linear framework (Och
and Ney, 2002) to score different hypotheses. Under this framework, translation models and
language models are viewed as features. Other features are also available for use. The de-
coder, uses all the information available to translate input sentences. The output of the decoder
can be (and usually is) evaluated to keep track of performance. A summarized picture of de-
coding is presented in Figure 2.10.

In the next section, we will explain the log-linear framework, with its features and
weights. Later, we will introduce some concepts of the search procedure used by the decoder.
Finally, we will discuss the different evaluation metrics used to measure the performance of a
decoder.

2.6.1 Log-Linear Models

While early statistical MT was based on the noisy channel model, most recent systems make
use of a discriminative log linear model (Och and Ney, 2002). In this model we directly model
the posterior probability p(e|f) and we search for the sentence with the highest posterior
probability:

ê = argmax

e

p(e|f) (2.15)
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Figure 2.10: Decoding overview. The decoder uses features (e.g. translation model, language
model) and weights for those features, to translate a source sentence (Spanish) into a target
language (English). Translations from the decoder can be compared to references to evaluate
a decoder’s performance. During parameter tuning, the feature weights are optimized towards
the evaluation metric.

A well suited framework for doing this modeling is maximum entropy (Berger et al.,
1996). In this framework we model p(e|f) through a set of M feature functions h

m

(e, f) each
of which has a parameter �

m

which acts as a weighting. The translation probability is then:

p(e|f) =
exp

hP
M

m=1 �m

h
m

(e, f)
i

P
e

0 exp

hP
M

m=1 �m

h
m

(e, f)
i (2.16)

Where h
m

(e, f) is the mth local feature (depends only on e and f ) and �
m

is its scaling factor
or feature weight. On the bottom part of the equation, we have a normalization factor which
assures that the exponential term is a true probability. Fortunately, when doing the search, we
can omit the normalization denominator. Thus, we obtain the following decision rule:

ê = argmax

e

MX

m=1

�
m

h
m

(e, f) (2.17)

In fact, the noisy channel approach is a special case of this kind of optimization, with
h1(e, f) = log pLM(e) and h2(e, f) = log pTM(f |e) with �1 = �2 = 1. In practice, the
language model and translation model are still the most important feature functions in the
log-linear model, but the architecture has the advantage of allowing the inclusion of other
arbitrary features as well.
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Since the optimal weights for the model are unknown, log linear models are trained to
directly optimize evaluation metrics using a procedure such as minimum error rate training
(MERT) (Och, 2003). This is known as parameter tuning.

Some of the most used features in state-of-the-art PBSMT systems are summarized in
Table 2.3.

Feature Description

�( ¯f |ē) An inverse conditional phrase-to-phrase probability model.
�(ē| ¯f) A direct conditional phrase-to-phrase probability model.
p
lex

(

¯f |ē) An inverse lexical weighting feature (a word by word version of �).
p
lex

(ē| ¯f) A direct lexical weighting feature (a word by word version of �).
p
d

A distortion model.
p
lm

(e) A language model .
w A word penalty, which provides means to ensure that the translations do not

get too long or too short.

Table 2.3: Most frequent decoding features in modern systems

Most of these features are estimated using phrase scoring and then stored in a dictionary-
like database called phrase-table. Then, phrase-tables are loaded by the decoder at runtime.

2.6.2 The Process of Decoding
Given an input source language sentence, there are several possible translations that can be
achieved. Each of those translations is called a translation option or translation hypothesis
and has a cost (the log-probability). We want to find the translation that has a lower cost.
During decoding, the input sentence is segmented and all translation options of the possible
segmentations are collected. This allows a quicker lookup, for faster decoding.

Search

The search for the best translation is done using a beam search algorithm. Each state is defined
by the ’covered’ words, (i.e. the number of words that have already been translated) and the
target language string that has been generated. In the initial state, no source language words
have been translated and no target language words have been generated. The goal state is
where all the source language words are covered. From each state, the transitions are defined
by the translation options. In Figure 2.11

For example, if our source sentence is “la casa blanca”, the initial state has three uncov-
ered words, no English translation and no cost associated

�
la casa blanca k - k 1

 
. When a

translation option that covers the first two words, using hla casa k the housei would allow us
to transition from the initial state to an state where there are two words covered , generating
the partial hypothesis “the house” with a cost (hypothetical) of � log p(0.75) (i.e. the state

�
*

* blanca k the house k 0.75
 

).
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Figure 2.11: Example of different states and transitions during decoding

The current cost of the new state is the cost of the original state multiplied with the
translation, distortion and language model costs of the added phrasal translation. Among
these the hypothesis with the lowest cost (highest probability) is selected as best translation.

Recombination

When there are two paths that lead to two or more hypotheses that are equivalent to the de-
coder, we keep only the hypothesis the least cost so far. The other hypothesis will always have
higher cost regardless of the future paths, so we can safely discard (prune) it. This is know
as hypothesis recombination. For example the following paths, lead to hypotheses that can be
recombined:

1.
�

la casa blanca k - k 1
 
!

�
* casa blanca k the k 0.9

 
!

�
* * blanca k the house

k 0.64
 

2.
�

la casa blanca k - k 1
 
!

�
* * blanca k the house k 0.75

 

In this example, we would choose the hypothesis b) that has a lower cost (higher proba-
bility) and discard hypothesis a).

Pruning

While the recombination of hypotheses as described above reduces the size of the search
space, this is not sufficient. Therefore, several types of pruning can be implemented (e.g.
threshold or histogram). This is done taking into account the cost of the hypothesis so far and
a future cost estimation. Future cost estimation is similar to the heuristic distance estimate in a
A* search. Since during decoding we are dealing with partial hypotheses (i.e. hypotheses that
cover/translate different parts of the source sentence), future cost estimation helps to prevent
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Figure 2.12: Example of hypothesis recombination

the early pruning of partial hypotheses with “difficult” segments (i.e. that cover parts with
inherent high translation cost) in favor of partial hypotheses with lower cost that are yet to
cover those high-cost segments.

Note that this type of pruning is not risk-free. If the future cost estimates are inadequate,
we may prune out hypotheses on the path to the best scoring translation.

N-best lists

Usually, we expect the decoder to give us the best translation for a given input according to the
model. However, search and model errors can occur, and the best-cost or first-best translation
hypothesis could not be the best option. Therefore sometimes is useful to have more options
to choose from. An n-best list is one way to represent multiple candidate translations. N-best
lists are formed by a set of N translation hypotheses sorted by their model score. Table 2.4
depicts an example of an n-best list.

2.6.3 Translation Evaluation

The widespread development and usage of MT systems created a need for cheap and fast
evaluation tools that could help to differentiate their quality and allow for development testing
on an ongoing basis. Therefore several automatic quality metrics have been proposed.

While current metrics are still very crude, translation evaluation is a very active research
field. One of the most widespread metrics is BLEU (Papineni et al., 2002), but there are others
that are starting to gain adoption (Meteor, TER). In this section we will briefly introduce them.
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Model
rank

Hypothesis Model
Score

1 similarly , we had to pay much more in the 2007 for vegetable oil
and dairy products .

-7.397

2 similarly , we had to pay much more in the 2007 by vegetable oil
and dairy products .

-7.405

3 similarly , we had to pay a lot more in the 2007 for vegetable oil
and dairy products .

-7.413

4 similarly , it was necessary to pay much more in the 2007 for
vegetable oil and dairy products .

-7.419

5 similarly , we had to pay much more in 2007 for vegetable oil and
dairy products .

-7.420

6 similarly , we had to pay a lot more in the 2007 by vegetable oil
and dairy products .

-7.421

7 similarly , had to pay a lot more in the 2007 for vegetable oil and
dairy products .

-7.422

8 similarly , we had to pay much more in 2007 by vegetable oil and
dairy products .

-7.425

9 similarly , it was necessary to pay much more in the 2007 by
vegetable oil and dairy products .

-7.427

10 similarly , had to pay a lot more in the 2007 by vegetable oil and
dairy products .

-7.431

Source: de igual modo, hubo que pagar mucho más en el 2007 por el aceite
vegetal y por los productos lácteos .

Ref: consumers also have had to pay significantly more for vegetable
oils and dairy products in 2007 .

Table 2.4: Example of a n-best list

BLEU

The BiLingual Evaluation Understudy (BLEU) is a widely used automatic evaluation tool for
Machine Translation. It ranks from 0 to 1, 1 being the best translation. Its main goal is to
compare n-grams of the candidate with the n-grams of the reference translations and to count
the number of matches. These matches are position-independent. The more the matches, the
better the candidate translation.

Since BLEU is precision oriented, shorter translations with more n-gram matches are
privileged. To avoid this, a brevity penalty is introduced. This brevity penalty deters from
having translations that are shorter than the reference. BLEU has two nice properties. It
accounts for adequacy by looking at word precision and it accounts for fluency by calculating
n-gram precisions. However, since the final score is the weighted geometric average, it is
deficient at the sentence level. Instead, it is an aggregate score over a large test set. Although
recent studies suggest that BLEU’s correlation with human judgments is not as strong as
previously thought (Callison-Burch et al., 2006), and other metrics are available, BLEU is
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still the main score reported in most academic research papers. Also, is the main indicator in
many SMT evaluation campaigns.

A clearer description of this metric can be found in (Papineni et al., 2002).

METEOR

The Metric for Evaluation of Translation with Explicit Ordering (METEOR) takes into ac-
count Recall and combines it with Precision but only at a unigram level. It aligns MT output
with each reference (individually) and takes score of best pairing (best alignment). The un-
igram matching takes into account morphology (via stemming) and also includes semantic
equivalents. It also uses a direct word-ordering penalty to capture fluency instead of relying
on higher order n-grams matches.

METEOR has several parameters that need to be tuned to optimize correlation with
human judgments, therefore it has a significantly better correlation with human judgments,
especially at the segment-level (Banerjee and Lavie, 2005). However, it is more expensive to
compute.

TER

Translation Error Rate is an error metric for machine translation that measures the number of
edits required to change a system output into one of the references (Snover et al., 2006). This
metric is widely used in evaluation campaigns such as GALE2.

2
http://projects.ldc.upenn.edu/gale/

http://projects.ldc.upenn.edu/gale/




Chapter 3

The Effects of Word Alignments on
Phrase-Extraction

Statistical word alignments serve as a starting point for the Statistical Machine Translation
(SMT) training pipeline. Improving their quality has been a major focus of research in the
SMT community. However, due to the amount of processing that a word alignment undergoes
before being used in translation (e.g. phrase extraction), the quality of word alignments is not
necessarily related to the quality of translation.

The goal of better understanding the relationship between the alignment quality met-
rics (AER, precision, recall) and translation quality, is to make improvements in word align-
ment carry over to improvements in the end-to-end system performance. This is especially
important in the case of discriminative word alignment (Niehues and Vogel, 2008), where
alignments are designed to maximize a desired quality metric based on hand labeled data.

In this chapter we present the results of our study published in (Guzman et al., 2009).
Here, we explore in detail the dependencies between the word alignment and the phrase ex-
traction, as an effort to better understand the role of word alignments in phrase extraction.
By studying the relationship of these two processes, we aim to shed light into the role that
statistical word alignments play into the SMT training procedure.

Furthermore, we explore not only alignment quality, but also structural characteristics
of the alignment such as link density and number of unaligned words, and their impact in the
phrase-pairs extracted from them. Our findings suggest that these structural characteristics
have a strong influence on how our translation models are estimated. We found that along
with alignment quality, alignment structure affects the quality of our translation model.

This chapter is organized as follows: First, we start with a brief discussion of the impor-
tance of alignments in SMT. Next, we cover the details of the experimental setup of our study.
We present the different types of alignments used and their characteristics. Later we analyze
the phrase-pairs extracted from these alignments and discuss the results. Finally, we present
the findings of a study we performed to assess the quality of phrase-pairs and observe how the
structural characteristics of our alignments impact phrase-pair quality.

33



34 CHAPTER 3. EFFECTS OF WORD ALIGNMENTS

3.1 Alignments and Phrase-Pairs
Statistical word alignments are the basis for many SMT paradigms. They can be pictured
as ’links’ between the source and target language words of a sentence pair. They represent
the lexical (word-to-word) translation of our sentences. Depending on the approach used
to build our translation model, their application in SMT may vary. For phrase-based SMT,
we use those alignments as input to build a phrase-lexicon (phrase-level dictionary) which
is latter used to translate unseen documents. In consequence, word alignments determine
which phrase-pairs are extracted and which are ignored. Furthermore, phrase-pair translation
probabilities are determined based on frequencies. If a defective phrase-pair is extracted in
several occasions during training, it will be prone to be wrongly used as a reliable translation.
Hence the importance of having good, accurate word alignments to start with.

Traditionally, high quality alignments are those that the most alike to a human generated
alignment. While this notion is itself debatable (two annotators can differ in their lexical
translations of a sentence pair), much research has been done in augmenting the quality of
automatic alignments, having as an objective to improve machine translation. Conversely,
there have been studies that have found that alignment quality is not correlated with translation
quality (Fraser and Marcu, 2007), or even prejudicial (Ayan and Dorr, 2006). However, little
has been done to measure the impact of alignments in a step-by-step procedure. If high quality
alignments are the goal, how does their quality impact our translation models?

In this study, we focus in describing how different alignments, with varying alignment
qualities, produce phrase-pairs. We pay attention to the quantity and quality of these generated
phrase-pairs. In the following sections, we describe the details of this study.

3.2 Experimental Setup
There are several types of alignments. On one hand, we have the generative alignments which
are discovered automatically given a set of sentence-aligned bilingual corpus. These models
are asymmetrical, which means that the alignment discovered in one direction (e.g. source-to-
target (S2T)) are different than the alignments discovered in their reverse counterpart. To al-
leviate this problem, there are several heuristics that symmetrize the two directions by adding
the common links first, and then the remaining links that do not cause conflict. One example
of such heuristic is the commonly used grow-diag-final heuristic (Och and Ney, 2004). On
the other hand, we have the discriminative alignments which are trained to maximize a certain
alignment metric. The results of these alignments are symmetrical and sometimes use the
generative model alignments as input features.

For the following analysis, we used a small set of different automatically generated
alignments along with human annotated data. We used both types of alignments: generative
and discriminative to align a Chinese (S) English (T) corpus. For the generative alignment, we
used the Viterbi alignments resulting from performing training through the standard sequence
of word alignment models IBM1, HMM, IBM3 and finally IBM4, in both directions, i.e.
source to target (S2T) and target to source (T2S). We used implementation provided by the
modified GIZA toolkit (Gao and Vogel, 2008). In addition, we generated the symmetrized
alignment (SYM), using the grow-diag-final heuristic implemented and used in the MOSES
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package (Koehn et al., 2007).
For the discriminative alignments, we used the approach described in (Niehues and Vo-

gel, 2008), because the output alignment matrix generated by such a system is composed of
continuous values representing the alignment strength between source and target word. This
allows to easily control the density of the alignment matrix, by using different intensity thresh-
olds, without having to recalculate the alignment. The different probability thresholds used
throughout this study are p = {0.1, 0.2, ..., 0.9}.

In the following experiments, the discriminative word aligner (DWA) uses the models
from the GIZA training (lexicon, fertility) as well as the GIZA S2T and T2S Viterbi align-
ments as features. It is tuned to minimize the alignment error rate (AER) on the hand-aligned
data using the alignment with threshold p = 0.5 as output. In Table 3.1, we show the sizes of
the training sets for each of the aligners. We also show the size of our testing set. Note that
for the tuning and the evaluation test sets the number of English words is about 20% higher
than the number of Chinese words. For the training data the ratio is closer to 1 : 1.13.

Corpus Statistics
#Sentences #Words

GIZA Training
Chinese 11.0 M 273M
English 11.0 M 309M
DWA Tuning
Chinese 500 10,285
English 500 12,632
Alignment Test
Chinese 2,000 39,052
English 2,000 48,655

Table 3.1: Data Statistics of the alignment training set

3.3 Characterization of Word Alignments

When describing an alignment, there are two types of measurements we can use. On one hand,
there are the alignment quality measures like AER, precision and recall, which describe how
close our output is to a gold standard in terms of the number of common links in the alignment.
On the other hand, we have different structural measurements that can be computed over
alignments, i.e. number of unaligned words, number of links, etc., which allow us to better
understand the inner structure of an aligner’s output. In the following sections, we explore
the differences in the quality and structure of the different alignments. Later we discuss how
these differences impact phrase-extraction.
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3.3.1 Analysis of Alignment Quality
In this part, we compare each of the automatically generated alignments against the hand-
aligned data. We used precision, recall and alignment error rate (AER) to evaluate the quality
of the alignments.

In Table 3.2 we display the quality measurements for the different word alignment ap-
proaches. First, the one-sided GIZA alignments and the symmetrized (grow-diag-final) align-
ments are listed. For the discriminative word alignments the results for different thresholds
are shown. Notice that the lowest error (AER) is achieved using the DWA-5. Changing the
threshold allows us to cover a wide variety of alignments, from high precision (DWA-9) to
high recall (DWA-1). Observe that the best discriminative alignments give a lower AER than
the symmetrized alignment from the generative models.

Quality Measurements
Aligner Precision Recall AER

GIZA S2T 51.67 34.91 58.33
GIZA T2S 66.48 56.92 38.67
SYM 67.98 56.29 38.41
DWA-1 45.16 71.96 44.51
DWA-2 57.35 65.26 38.95
DWA-3 64.59 61.64 36.92
DWA-4 69.47 59.22 36.06
DWA-5 72.99 57.38 35.75
DWA-6 76.04 55.22 36.02
DWA-7 79.26 52.33 36.96
DWA-8 83.26 47.91 39.18
DWA-9 89.19 38.58 46.13

Table 3.2: Precision, Recall and AER for the different alignments. We show in bold the best
results for each column.

The same results are summarized in the Figure 3.1. Here we get a better sense of the be-
havior of the alignments. First, for the DWA alignments, we get a balance between precision
and recall with the DWA-3 alignment. However, the best AER is obtained by a slightly more
precise alignment (DWA-5). For the GIZA alignments and the heuristically symmetrized
alignment, we observe more precision than recall balance, the symmetrization certainly re-
duces the overall error rate.

3.3.2 Analysis of Alignment Structure
In addition to quality, other statistics related to the structure of the alignment were also com-
puted. In this part of the study we also include the hand aligned data to have a better sense of
which alignments are closer to the human generated data in terms of structure. The character-
istics measured are:
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Figure 3.1: Precision, Recall and AER for the different alignments

� the total number of links (ANLK) in an alignment;

� the average density of an alignment, i.e. the average number of links per word in a
sentence (source ASLK, or target ATLK).

� the number of unaligned words (gaps) in the source (ANSG), and target (ANTG), and their
corresponding per word averages (AWSG, AWTG).

Table 3.3 displays the source and target densities of the alignments resulting from human
and different automatic alignments. For the hand aligned data we see that on average, one
English word is aligned to 1.13 Chinese words, while the reverse case is almost one and a
half. This discrepancy can be explained due to the difference in sentence lengths of Chinese
and English test data.

The GIZA alignments have the characteristic that in one direction each word is aligned
exactly to one word in the other language (source and target change their role in different
directions). Since some words, in our case 2-4%, are explicitly aligned to the NULL word,
the density of links per proper word is slightly below 1 (0.96 and 0.98 for S2T and T2S,
respectively). For the discriminative aligner the number of links decreases when the threshold
is increased. The threshold DWA-3 gives a density closer to the hand-aligned data. This
alignment has the best balance between precision and recall. Nevertheless as shown in Table
3.2 its quality is not the best. A higher threshold gives a sparse alignment which results in a
higher precision. This makes evident that human alignments are denser than our best quality
alignments. In other words, there are many “good links” that we are missing.
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Alignment Statistics: link density
Aligner ANLK ASLK ATLK

Hand Aligned 55,322 1.41 1.13
GIZA S2T 37,377 0.96 0.81
GIZA T2S 47,362 1.24 0.98
SYM 45,805 1.25 1.01
DWA-1 88,164 2.26 1.82
DWA-2 62,951 1.66 1.33
DWA-3 52,796 1.41 1.12
DWA-4 47,160 1.27 1.01
DWA-5 43,493 1.17 0.93
DWA-6 40,176 1.09 0.86
DWA-7 36,523 1.00 0.79
DWA-8 31,833 0.89 0.70
DWA-9 23,931 0.69 0.55

Table 3.3: Total number of links (ANLK), average number links per source word (ASLK) and
average number of links per target word ATLK, for different alignments

3.3.3 Unaligned Words

More interesting yet, is to look at the summary of unaligned words in Table 3.4.
In general, there is a tendency to leave more Chinese words than English words un-

aligned. Note that the hand alignment has the most symmetric distribution (about 10% in
both sides).

The GIZA alignments have the most striking disparity. While S2T leaves more than half
of the English words unaligned, T2S leaves many Chinese words unaligned.

For the DWA case, we observe more Chinese words unaligned at first. But as we increase
the threshold, the situation is reversed ( remark DWA-9). The situation is better appreciated in
Figure 3.2 where we can observe the increase in the number of unaligned words as we move
from lower to higher thresholds.

Comparing the different alignments to the human generated alignment, we find that for
the source side the symmetrized alignment is very similar to the gold standard on the number
of words left unaligned. On the target side, the closest match is given by DWA-3 (totals)
and DWA-4 (percentage). This shows that even our best quality alignments (AER-wise) are
leaving too many words unaligned.

3.3.4 Summary

So far we have discussed several different statistics that can be used to describe alignments.
They give us different perspectives on the nature of an alignment. And how does it compare
to a human reference.
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Alignment Statistics: unalignments
Aligner ANSG AWSG ANTG AWTG

Hand Aligned 4629 0.11 3739 0.08
GIZA S2T 1675 0.04 26597 0.51
GIZA T2S 9309 0.22 1293 0.02
SYM 4905 0.11 9675 0.16
DWA-1 1241 0.03 240 0.00
DWA-2 3642 0.07 1180 0.02
DWA-3 5676 0.12 2988 0.04
DWA-4 7418 0.16 5095 0.08
DWA-5 8882 0.20 7137 0.12
DWA-6 10368 0.24 9531 0.16
DWA-7 11987 0.27 12623 0.22
DWA-8 14154 0.32 17002 0.31
DWA-9 18591 0.43 24768 0.45

Table 3.4: Total number of unaligned words for source ANSG and target ANTG sides of the
alignment. Also percentage of unaligned words for source AWSG and target AWTG.

� We presented the different measures of alignment quality for the alignments. We ob-
served that we have a myriad of alignments in term of balance of precision and re-
call. However, we discovered that precision-oriented alignments prevail over their recall
counterparts.

� We also presented two alternatives to measure the structure of the alignments in terms
of the density of an alignment. First, we presented the link density for the different
alignments. Then we measured the number of unaligned words. We discovered that
the most-human like alignments in terms of density are not the better quality ones.
Our better quality alignments trend to be less-dense than the human counterpart. This
outlines that there are many links in the hand alignment that we are leaving out.

In the following section, we will analyze the output of the phrase-extraction algorithm
using the analyzed alignments as input. Our objective is to determine which of the character-
istics in the alignment might have more impact on the generated phrase-pairs.

3.4 Analysis of Phrase-Pairs
After generating symmetrized word alignments, the usual step in the pipeline is to extract
phrase pairs. In the experiments described in this section, we used phrase-extract heuristic
(Och and Ney, 2004) as implemented in the Moses package (Koehn et al., 2007), with a
maximum phrase length of 7.

As opposed to word alignments, there is no gold standard human generated phrase table.
While some metrics as CPER (Ayan and Dorr, 2006) have been proposed, they rely heavily in
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Figure 3.2: Total number of unaligned words by system.

the phrase-extraction algorithm to generate gold-standard phrase-pairs from a hand alignment.
By doing so, the metric obscures the effect that the phrase-extraction heuristic may have on the
quality of the phrase-table. In practice, measurements such as coverage, number of generated
phrase pairs, size of the phrase table (i.e. unique phrase pairs), are used. In this study, we
analyzed the following characteristics of the output of the extraction heuristic:

� The number of phrase-pair instances PNI generated by an alignment a.

� The percentage of singletons PNU, i.e. unique phrase-pairs.

� The average source PSL and target PTL phrase lengths per phrase pair.

� The average number of source PSG and target PTG “gaps” or unaligned words inside a
phrase-pair.

� The per-word average number of unaligned words in the source (PWSG) and target
(PWTG) sides of the phrases extracted from an alignment.

In the following subsections, we analyze the impact of the alignments in each of these
characteristics of the phrase table.

3.4.1 Analysis of Number and Length of Phrase-Pairs
The number of generated phrases is an important characteristic of an alignment. The more
unique phrase-pairs represent more translation options during decoding. However, the more
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repeated phrases represent that our models will have smooth probabilities and be better esti-
mated. Additionally, the longer our phrases are, usually means that we will be able to translate
our input sentences using fewer phrases (which reduces the need for reordering). In this part,
we start off by measuring these characteristics in the phrase-pairs generated by our alignment.

Phrase Statistics: number & length
Aligner PNI PNU (%) PSL PTL

Hand Aligned 111K 78.5 2.90 3.29
GIZA S2T 112K 87.6 2.13 3.38
GIZA T2S 90K 77.3 2.74 2.60
Symmetrized 136K 84.8 2.80 3.35
DWA-0.1 19K 65.4 2.28 2.38
DWA-0.2 51K 74.4 2.63 2.70
DWA-0.3 86K 79.0 2.81 2.92
DWA-0.4 126K 82.7 2.96 3.13
DWA-0.5 171K 85.8 3.13 3.33
DWA-0.6 231K 88.4 3.28 3.56
DWA-0.7 321K 90.8 3.45 3.79
DWA-0.8 467K 93.3 3.64 4.01
DWA-0.9 829K 95.7 3.91 4.31

Table 3.5: Different statistics for the phrase-pairs according to their length and number. We
have the total number of phrase-pair instances PNI, the percentage of singletons (PNU) and
the average source (PSL) and target (PTL) phrase lengths

In Table 3.5, we summarize the statistics of the phrases according to their length, and
number. The first piece of information that we observe is that as the DWA alignments gets
sparser, the number of phrase-pairs increases steadily. Furthermore, the percentage of single-
tons also increases.

This is a result of the behavior of the phrase extraction algorithm. As the DWA align-
ments become less dense, the number of phrase-pairs that are consistent with the alignment
increases. This is similar with the results reported by (Ayan and Dorr, 2006), where they
found that the size of the phrase table increases dramatically as the number of links in the
initial alignment gets smaller. However not all the alignments exhibit the same behavior.
For example, take DWA-7 and GIZA-S2T alignments. They have about the same number
of links. Nonetheless, the number of generated phrase-pairs is almost three times larger for
DWA-7 than for the S2T. Instead, the number of phrases generated seems to be influenced by
an interaction between the number of links and the number of unaligned words.

This result is more evident when we look at Figure 3.3. In this graph, we overlay the
total number of unaligned words (source and target) on the bar graph for the total number
of extracted phrases for each alignment. Observe that there is an interaction between the
number of unaligned words on the source and target side of the alignment and the number
of extracted phrases. While this rule is not perfect, it describes much better the quantity of
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extracted phrases than the number of links.

Figure 3.3: Distribution of length of the source phrases extracted from different alignments.

Also remark that as we increase the sparsity of our alignments, the number of unique
phrase-pairs also increases, but not nearly at the same rate. In Figure 3.4 we overlay the
graphs of the two statistics. Observe how the number of extracted phrases increases quasi-
exponentially, while the growth in the unique phrases is more damped, almost logarithmic.

This showcases the impact of spasity (more specifically, unaligned words) in the com-
position of our translation model. The more sparse is our alignment, the more phrase pairs we
will be able to obtain. Unfortunately, many of the entries in our phrase-table will be seen only
once (unique), which will result in a un-smoothed estimation.

Another interesting piece of information is the distribution of lengths of the extracted
phrase-pairs. We observe that as an alignment gets sparser the number of short source phrases
remains about the same. However, the phrase extraction algorithm is able of finding longer
phrases; many of which include a larger number of unaligned words, as we will show in the
following subsection.

3.4.2 Analysis of Phrase Alignment Gaps
In Table 3.6, we summarize the gap statistics for the phrase-pairs extracted from the different
alignments. Observe that the average number of gaps in both source and target sides of a
phrase-pair increases as the sparsity of an alignment increases. For instance, most of the
phrase-pairs of most-dense alignment (DWA-1) are gap-less (90% for source and 98.9% for
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Figure 3.4: Number of extracted phrase pairs vs. unique phrase pairs per system

target). In contrast for the DWA-9, the gap-less phrase pairs for source and target side account
for 16.4% and 13.6% respectively.

Notice also that the number of gap-less phrase-pairs tends to be higher in the English
side, than in the Chinese side ( not taking into account GIZA alignments). In fact, when we
look at the average per-word number of phrase alignment gaps (PWSG, PWTG), we observe
that is extremely close to the per-word average of unaligned words of the alignments (AWSG,
AWTG). In fact, the correlation between these two statistics is very high (0.93 for source and
0.94 for target) suggesting that the distribution of unaligned words in our alignment carries
into the phrase-pairs even after phrase-extraction.

3.4.3 Summary

In this section, we have observed how the structure of the different alignments has an impact
on the phrase-pairs that are extracted from them. First, we observed that the number of ex-
tracted phrase-pairs is related to the number of unaligned words in the generating alignment.
Furthermore, we observed that many of the generated phrase-pairs are unique, and trend to be
longer.

Furthermore, we discovered that the average per-word number of alignment gaps are
preserved after phrase extraction. The correlation between the gap-measuring variables is
very high. Therefore, we wonder if the gaps in an alignment also affect the quality of a
phrase-pair. In the next section, we present a study in which we evaluated the human-assessed
quality of phrase-pairs.
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Phrase Statistics: gaps
Aligner PSG ¬PSG(%) PNTG ¬PTG(%) PWSG PWTG

Hand Aligned 0.50 66.6 0.39 71.7 0.11 0.08
GIZA S2T 0.15 85.6 2.01 20.2 0.04 0.44
GIZA T2S 0.79 52.2 0.07 93.2 0.19 0.02
Symmetrized 0.59 62.3 0.95 51.2 0.11 0.16
DWA-0.1 0.12 90.0 0.02 98.9 0.02 0.00
DWA-0.2 0.37 74.8 0.11 92.4 0.07 0.02
DWA-0.3 0.56 64.0 0.26 80.3 0.11 0.05
DWA-0.4 0.80 53.7 0.51 66.6 0.15 0.08
DWA-0.5 1.06 44.8 0.79 54.7 0.19 0.12
DWA-0.6 1.30 37.6 1.09 43.8 0.22 0.16
DWA-0.7 1.56 31.0 1.47 33.2 0.26 0.22
DWA-0.8 1.84 24.8 1.88 23.7 0.31 0.29
DWA-0.9 2.34 16.4 2.56 13.6 0.39 0.41

Table 3.6: Different statistics for the phrases according to their number of alignment gaps.
We display the average number of gaps found in source (PSG) and target (PTG) phrases, along
with the percentage of phrases extracted without into any gap (¬PSG, ¬PTG). We also present
the per-word average of source and target gaps (PWSG,PWTG)

3.5 The effect of Alignment Gaps in Phrase-Pair Quality
As we have seen in the previous analysis, the number of unaligned words of an alignment
has a huge impact on the number of phrase pairs extracted. As we observed, the phrase
extraction heuristic allows to generate phrase pairs by growing into gaps. Some of these
gappy phrase pairs will be useful. They will increase coverage, and actually might be accurate
phrase pairs. However, many other phrase pairs will be partially, if not completely wrong. To
investigate how the quality of the extracted phrase pairs depends on the type of the underlying
word alignment, and on the gaps of the phrases extracted from these alignments, a small-
scale human evaluation was conducted. Several native Chinese speakers participated in this
evaluation.

The procedure was the following: Each subject was presented with a set of Chinese-
English phrase pairs. For each phrase-pair they judged if source and target phrase were ad-
equate1 translations of each other. This was done without any other contextual information
(i.e. the surrounding words, or the sentence pairs from where these phrases were extracted).
This was also done blindly, as the evaluators did not have any knowledge of the origin of the
phrase-pairs. Furthermore, we included a noisy set, which were pairs of randomly selected
source and randomly selected target phrases. Such noisy set would help us to determine how
likely is to obtain a good score by just having a random pair of source and target phrases.

The phrases included are the ones generated by the alignments from the DWA with

1By adequate, we mean that a source phrase could be used as translation of a target phrase in at least one
situation, without loss of meaning
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thresholds 0.1 to 0.9, the symmetric alignment and the hand-aligned data. Each set was gen-
erated by randomly selecting unique phrases generated by the alignments. We split the phrase
pairs extracted from the hand-aligned data into two groups, Gaps and No-Gaps, which stand
for phrase pairs generated from the hand alignment by growing into gaps, and phrase pairs
generated without growing into gaps. We used this configuration because we wanted to high-
light the effect of having gaps in the phrases generated from a perfect alignment. The sample
sizes were of 100 for the HA-Gaps, HA-No-Gaps, symmetric alignment and noisy sets and
50 for the DWA-1 to DWA-9 sets.

After the results were collected, an analysis of covariance (ANCOVA) was done, con-
sidering the independent variable: system, the random variables: evaluator, number of gaps
in source phrase and target phrases; and the dependent variable: adequacy, with non-repeated
measurements. As we can see in Table 3.5, only the system (alignment) is a significant factor,
i.e. the means of the evaluation by system are not equal. This, as we expected, means that
there are differences in quality across systems. The interaction between system and evaluator
is not significant, which means that there is no evidence that show that evaluators were biased
towards any specific system, which is expected in a blind experiment. Also note that while
the effect of the number of source gaps is almost significant (at ↵ = 0.01, there is strong
evidence that suggests that there is an interaction between source and target gaps. In other
words, looking at the gaps in one side of a phrase-pair may not tell us much about its quality.
However, the combination of source and target gaps might be a good indicator.

Source SS df MS F p-val

EV 0.04 2 0.02 0.15 0.8556
SYS 13.92 8 1.74 11.48 0.0000
SG 1.76 2 0.88 4.42 0.0138
TG 0.74 2 0.37 1.77 0.1745
EV*SYS 6.13 40 0.15 1.01 0.4518
SG*TG 9.24 29 0.31 2.10 0.0007
Error 113.99 752 0.15
Total 196.66 849

Table 3.7: ANCOVA table showing the effects in the experiment: Evaluator (EV), System
(SYS), Number of Source Gaps (SG), Number of target Gaps (TG). Also two-way interactions
are shown for Evaluator*System, Source Gaps*Target Gaps.

In Figure 3.5 we show the mean of the evaluation by system2. As expected, random
phrase-pairs perform poorly. This verifies the consistency of the judges evaluation as good
scores could not have been achieved randomly. Surprisingly, the phrase pairs extracted from
DWA-1 achieved the highest score. While DWA-1. phrase are nearly all gap-less, the under-
lying word alignment is far from perfect. Furthermore, comparing phrase pairs extracted from
human word alignment, shows that a perfect word alignment does not lead to perfect phrase-
pairs given the current extraction heuristic. However, the HA-no-gaps set performs better than

2The confidence intervals are merely informational. To determine statistical differences, one must perform
unplanned pairwise comparisons such as Scheffé tests
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Figure 3.5: Phrase pair quality evaluation results

the HA-gaps set. This suggests that the quality of a phrase-pair extracted from a gold standard
hand alignment deteriorates when it has gaps on either its source or target phrases. Over-
all, we do observe the tendency that less number of unaligned words in the word alignment
leads to better quality of the extracted phrase pairs. In other words low precision/ high recall
alignment results in fewer but higher quality phrase pairs. To balance the trade-off between
higher quality phrases and coverage, we conducted a series of translation experiments were
the number of unaligned words was taken as a feature. They are described in detail in Chapter
6.

3.6 Conclusions
In this chapter we studied in detail the relation between word alignment and phrase extraction.
First, we analyzed word alignment according to several characteristics and compared them to
hand-aligned data. We observed that there is a lot of room for improvement for our alignment
models. Second, we analyzed the phrase-pairs generated by these alignments. We observed
that sparser word alignments lead to a higher number of extracted phrases, which ultimate
results in larger phrase tables. While these larger phrase tables contain longer phrases, many
of the phrases contain unaligned words. Also, the number of unaligned words in the alignment
have a large impact on the characteristics of the extracted phrase table. The unaligned words
in the extracted phrase pairs follow the distribution of unaligned words in the alignment from
where they were extracted. Third, a manual evaluation of phrase pair quality showed that the
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more unaligned words (gaps) result in a lower human perceived quality.





Chapter 4

The Effects of Alignments on the
Phrase-Based Translation Model

In the previous chapter, we observed how several alignment density characteristics (link den-
sity, source and target gaps) influence the phrase-extraction process. We performed an ex-
ploratory study that allowed us to get a sense of the importance of certain features, specially
the distribution of unaligned words. We detected a strong influence of alignment gaps in the
number, length and quality of extracted phrase-pairs.

In this chapter, we revisit the problem with a different focus. First, we study the transla-
tion model also known as phrase-table (as opposed to only phrase-pairs). The main difference
is that in a translation model, each phrase-pair is unique and has a series of translation proba-
bilities assigned.

Second, we make use of more variables in this analysis. In addition to alignment density,
we, we include certain distortion variables, such as the proposed by (Lambert et al., 2010).
For the phrase-table, we also measure the entropy of the translation model features.

Finally, we go past the exploratory study by building regression models to help us predict
the most important phrase-table variables using alignment characteristics as input. We test the
regression models’ robustness against unseen data.

This chapter is an enhancement of the study presented before, in Chapter 3 and is tightly
integrated to the analysis developed later in Chapter 5. There, we address how machine trans-
lation quality is related to several characteristics of the translation model. The remainder of
this chapter is organized as follows: first we introduce the translation models and define the
translation probabilities. Then, we define the setup of our experiment. Next, we perform a
correlation analysis of the alignment variables and phrase-table variables to develop a sense
of the relationships between the variables. Afterwards we build more fine-grained regression
models and test their robustness to predict unseen data. We wrap up with a discussion of our
findings.

4.1 The Phrase Translation Model
In the previous chapter we observed how we could extract phrase-pairs from an alignment.
The following step in the training procedure after phrase-extraction is known as scoring. Its

49
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objective is to create a translation model, otherwise referred as a phrase-table. This process
consists in calculating different translation probabilities for each phrase-pair.

In Figure 4.1 we show a snippet of a phrase table. In addition to the English and Spanish
phrases, we observe the (optional) alignment information, as well as four translation proba-
bilities which we introduce below.

" familia " que figura |||

" family " |||

(0) (1) (1,2) () (2) ||| (0) (1,2) (2,4) |||

0.0140845 2.02353e-07 1 0.0163321 2.718

" familia " que se encuentra dentro |||

" family " that falls within |||

(0) (1) (2) (3) (4) (4) (5) ||| (0) (1) (2) (3) (4,5) (6) |||

1 2.03553e-06 1 1.18114e-05 2.718

" familia " que se encuentra |||

" family " that falls |||

(0) (1) (2) (3) (4) (4) ||| (0) (1) (2) (3) (4,5) |||

0.5 9.75054e-06 1 1.90139e-05 2.718

Figure 4.1: Snippet from a phrase table including alignment information. For display pur-
poses each entry of the phrase table appears broken into four lines. The first and second lines
correspond to the phrasal translations (phrase-pairs). The third line corresponds to the align-
ment information (source to target and target to source). The fourth line corresponds to the
feature values for each phrase-pair.

4.1.1 Translation and Lexical Probabilities
Traditionally, there are two types of probabilities that are embedded in a phrase-table. We
present them in 4.1.

ID Variable Description

PT1 p(f |e) Inverse phrase-translation probability
PT2 p

lex

(f |e) Inverse lexical probability
PT3 p(e|f) Direct phrase-translation probability
PT4 p

lex

(e|f) Direct lexical probability

Table 4.1: The four different translation probabilities included in a phrase-based translation
model

On one hand we have the phrase-translation probabilities p(f |e) and p(e|f), which are
the maximum likelihood estimates (MLE) of the phrase-pair likelihoods based on a frequency
(counts) approach.
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Thus the direct probability p(e|f) of a foreign phrase f of being translated into and
English phrase e is determined by:

p(e|f) = count(e, f)
count(f)

(4.1)

where count(e, f) represents the number of times that phrase e and phrase f appear
in the same phrase-pair, while count(f) represents the number of times the foreign phrase
f appeared in any phrase-pair. The similar criterion is used for the inverse p(f |e) phrase
translation probability.

Lexical translation probabilities p
lex

(also known as lexical smoothing) measure the
translation probability in a per-word basis. Since they are calculated over the whole vocab-
ulary using alignment information, they trend to be smoother than phrase-translation proba-
bilities. For more details on how these probabilities are calculated, please refer to Appendix
B.

4.2 Experimental Setup

In this chapter, we analyze different alignments and the phrase-tables extracted from them. In
addition to the alignment quality and density variables we discussed in the previous chapter,
in this chapter we included distortion and dimension variables. In Table 4.2, we present each
variable used in this study along with a brief description. For a thorough discussion of how
each variable is calculated, please refer to Appendix B.

In the following part, we present the data we used for our study. First, we introduce the
datasets and sampling techniques used. Later, we introduce the different alignment procedures
employed.

4.2.1 Data and Sampling

In this study, we evaluate alignment quality and structure as characteristics of the alignments
and measure their implications in translation model estimation. To measure quality, we re-
quire to use human labeled data. Unfortunately the availability of human labeled data is
limited. Moreover, to make reliable estimations of the phrase-translation probabilities in a
translation model we require a considerate amount of word aligned training data. Hence,
we resorted to the sampling-with-replacement (bootstrapping) technique which is commonly
used for obtaining smooth distributions when sampling data is scarce. For instance, this tech-
nique has already been applied for estimating confidence intervals for machine translation
quality (Zhang and Vogel, 2004; Guzman and Garrido, 2008).

The initial sampling pools were populated with the datasets displayed in 4.3. In our
experiments, we randomly sampled with replacement 1000 word alignments for each of the
aligners. We obtained 30 of such subsamples for our Spanish-English training set and 10
subsamples of the same size for each of the aligners in our Spanish-English, Arabic-English
and Chinese-English test sets.
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Alignment variables Phrase Table variables
var id description var id description

Alignment
Quality

F F-Score
P Precision
R Recall

Alignment
Density

ASG A. Source Gaps PSG P. Source Gaps
ATG A. Target Gaps PTG P. Target Gaps
ALK A. Link Dens PLK P. Link Dens

Alignment
Dimension

ASL A. Source len PSL P. Source len
ATL A. Target len PTL P. Target len

Alignment
Distortion

ACR A. Crossings PCR P. Crossings
ADT A. Rel. Distort. PDT P. Rel. Distort.
ADG A. Diagonality PDG P. Diagonality

Translation
Model
Features

PT1 Avg entropy p(f |e)
PT2 Avg entropy p

lex

(f |e)
PT3 Avg entropyp(e|f)
PT4 Avg entropyp

lex

(e|f)

Phrase Table
entries

PSU srcUnique
PTU tgtUnique
PNE Entries

Table 4.2: Alignment and phrase-table variables considered in this study
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Language pair Source data Size

Spanish-English EPPS test 400
Chinese-English GALEP3 test 2000
Arabic-English MT03 test 2552

Table 4.3: Hand alignment datasets

Systems

To have more diversity in our samples, we different aligners for each of our language pairs.
On the discriminative side, we used the discriminative aligner by (Niehues and Vogel, 2008)
and filtered to relatively balanced density-thresholds (0.4,0.5,0.6,0.7).

On the generative side, we used the GIZA(Och, 2000) source-to-target and target-to-
source aligners symmetrized using the following heuristics: grow-diag, grow-diag-final, and
grow-diag-final-and. Not only these heuristics are a standard (grow-diag-final is the default
for the Moses (Koehn et al., 2007) decoder), but also the three of them provide a nice differ-
entiation in terms of precision-recall balance. For instance, grow-diag-final yields high-recall,
denser alignments, grow-diag provides high-precision sparse alignments and grow-diag-final-
and produces a more balanced balanced alignment.

In summary we obtained 210(30x7) subsamples of Spanish-English alignments for the
estimation of our regression models and 70(10x7) subsamples for each of the Spanish-English,
Arabic-English and Chinese-English test sets.

Phrase-Tables

For each of the alignment samples, we obtained their corresponding phrase-tables using
the phrase-extraction and phrase-scoring algorithms readily provided in the Moses package
(Koehn et al., 2007). Furthermore, we measured the alignment variables of the samples and
their corresponding phrase-tables and used their subsample average as input data.

The overall setup of our experiment is depicted in Figure 4.2.

4.3 Correlation Analysis
The first step in our analysis was to determine which were the variables that are the most cor-
related among each other. While paired correlations give us an idea of ‘relatedness’ between
variables, a full correlation matrix shows us the big picture. The main objective is to see
which variables relate with each other before performing regression. This helps to alleviate
some problems that can be caused by multicollinearity.

To simplify this analysis, we clustered the variables by similarities. In Figure 4.3 we
observe a correlation map of the alignment and phrase-table variables grouped by similarity
(positive correlation) to allow an easier analysis. The procedure to generate such map is to
simply run a k-nearest-neighbor clustering algorithm.

For an easier interpretation, we annotated the major clusters and labeled from 1 to 6.
Below, we explain each one of them.
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Figure 4.2: In step 1, we resample the original source and target sentences along with
the computer and human generated alignments. Then we extract a phrase-table for each of
these subsamples. We then evaluate the alignment quality (AQ), alignment structure (AS) and
phrase-table alignment structure (PS).

C1 Diagonality, phrase-distortion and phrase-length
In the first cluster, we observe a clear correlation between the alignment diagonality
ADG, the average source phrase length PSL and to a lesser extent the average target
length PTL. The interpretation is straightforward. The more ‘diagonal’ or monotone
our alignments are, the less trouble the phrase-extraction algorithm will have extracting
longer phrases. Additionally we observe a relationship between the relative alignment
distortion at the phrase-level PDT and the alignment diagonality ADG. This is surprising
given that alignment diagonality and relative distortion are negatively correlated. This
means that the more alignment distortion we have in our alignment, the less alignment
distortion we can expect in our phrase-table PDT. The explanation for this is that the
more distortion we have in our alignment, the phrase-extraction will find more restric-
tions and will in turn extract only phrases in regions of the alignment where there is
lower distortion. Thus the resulting phrases will have lower relative distortion. Cluster
C1.b indicates that there is a strong relationship between C1 and C4 which also con-
sists of alignment distortion variables (alignment relative distortion ADT and alignment
crossings ACR) which indicates that alignments that have high diagonality also have
lower values of distortion. In addition, alignment density clusters C2, C6, are to a lesser
extent, also related to this cluster, which means that alignments that have high density
also trend to have more distortion.
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Figure 4.3: Correlation map for different variables. In this figure, the lighter colored squares
indicate a strong correlation (either positive or negative) of the two variables in the respective
row and column. The darker colors indicate a lack of relationship between the variables.
Major clusters are labeled from 1 to 6.

C2 Sparsity
In this second cluster, we observe a large number of variables. Many of them represent
alignment sparsity, as measured by source and target gaps in both the alignment and
phrases (PSG, PTG, ASG, ATG). This reiterates the observations we made previously:
the sparsity of an alignment remains even after phrase-extraction. Otherwise said, the
phrase extraction algorithm does not modify alignment sparsity.

Additionally, in this cluster we have the alignment quality metric precision P which
confirms the intuition sparser alignments trend to be more precise (this is especially
true for discriminative alignments, as we observed in 3 ).

In this cluster, we also have three important translation model variables: the number of
entries in a phrase-table PNE and the direct and inverse phrase-translation entropies (PT3
and PT1). On one hand, we confirm what we had observed previously in (Guzman et al.,
2009), where we observed that sparser alignments yield a higher number of phrase-
pairs. On the other hand, we observe that sparser alignments produce less determined,
more ambiguous phrase-translation probabilities. We will discuss these relationships
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more into detail in next section, where we pay close attention to them.

C3 Lexical entropy
In this third cluster, we have the lexical entropies from the phase-table (PT2, PT4).
These two variables are almost exclusively related to each other. Although we can
observe a slight correlation with some of the alignment distortion variables (ADG, ACR,
ADT). As we will discover in next section where we build regression models for these
variables, they are hard to predict based only on alignment density and distortion.

C4 Alignment distortion
In this cluster, we have two alignment distortion variables: alignment crossings ACR
and alignment relative distortion ADT. As mentioned previously, this cluster is highly
related to the diagonality cluster C1 as observed in cluster C1.b. As noted before, it is
also moderately related to the alignment density and sparsity clusters.

The interpretation for this is that as our alignment gets denser, it is more likely to have
more crossings and increasing its relative distortion.

C5 Alignment density
In this cluster, we have the alignment density variables ALK along with phrase align-
ment density PLK. This confirms that the process of phrase-extraction does not modify
the behavior of alignment density. Related to these variables we have the percentage of
unique source and target phrases (PSU, PTU). While this relationship might seem coun-
terintuitive at first (as before we observed more unique phrase-pairs as we decreased the
alignment density), this relationship is explained in detail in the next section when we
observe that alignment gaps are responsible for such behavior.

In this cluster, we could also include the alignment quality metric recall R. This, again
is related to the fact that the more links we have in our alignment, the more likely we
are to cover good links in the alignment reference.

Finally, remark one more time, how there is a strong relationship between the density
variables and the sparsity variables (gaps) which measure different ends of the same
spectrum. This is visible form cluster C2.b.

C6 Sentence lengths
This last cluster brings together the average source and target lengths of the aligned sen-
tences (the dimensions of the alignment matrix ASL, ATL). We can observe that these
two variables do not relate to any other variable. Remark that they do not influence in
any measure the phrase lengths PSL and PTL. This is an artifact of the extraction heuris-
tic being limited to a certain max-phrase-length (in this case 7). Additionally, phrases
are limited by link-related restrictions more than to the total length of the original sen-
tences.

Alignment quality and distortion
While precision P and recall R are related to density variables, which is understandable
given their nature, the F-metric F is only moderately related to alignment distortion.
This means that the more monotonic our alignment is, the better the alignment quality.
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Unfortunately, the F-metric (the counterpart of the popular AER metric used as a stan-
dard for alignment quality) does not correlate well with any phrase-table characteristic.

In summary, we have a high degree of correlation between phrase-table variables and
many of the alignment variables, specially the alignment density and ones. For some variables
like the number of entries in a phrase table and average phrase source length, we would expect
to have good prediction models for phrase-table variables based on alignment information. For
other variables like the lexical translation entropies PT2, PT4, we can expect to have weaker
models.

Additionally, we observed how the distribution of certain variables remains unaffected
for alignment density variables, even after phrase extraction. More density and alignment
gaps in our alignment will mean more density in our phrases. The inverse can be said for the
relative alignment distortion ADT. More alignment distortion ADT will result in less alignment
distortion in our phrase tables PDT. For the other variables, this relationship is not kept. The
phrase-extraction modifies the distribution of the source and target lengths ( ASL and ATL vs.
PSL and PTL), diagonality (ADG vs. PDG) and number of crossings (ACR vs PCR).

In the following part we will discuss the regression models built upon alignment vari-
ables to predict phrase-table variables.

4.4 Regression Models
Up to now, we have corroborated many of the intuitions we developed in Chapter 3. For in-
stance, we have observed that alignment density and sparsity have a large contribution to how
our phrase-tables are built. We have also developed an intuition on how alignment distortion
affects other translation model variables. In this section we go beyond an exploratory study.
We use multivariate regression as a tool to predict different phrase-table variables using the
alignment characteristics as predictors. As we will discuss in Chapter 5 some of the phrase-
table variables that we have selected for this part also show a strong influence the translation
performance.

Furthermore, we use unseen data to measure the generalization of the regression models
built. In addition to Spanish-English data, we also incorporate Arabic-English and Chinese-
English alignments.

For a simpler analysis, we have divided this section into three parts. In the first part
we discuss the effects of alignment variables into the size and percentage of unique entries
in a phrase-table. Second, we discuss the effects of alignments in the average source and
target phrase length. Last, we observe the relationship between the alignment density and the
entropy of the phrase-table translation probabilities.

4.4.1 Entries in the Phrase-Table
The size of a phrase-table is an important factor for machine translation. The more entries we
have available give us more diversity of translation options. Unfortunately it is often found
that many of these entries consist of pure noise. Rare phrase pairs (which are seen just a few
times during training) fall into that category. Another way of measuring the diversity of a
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phrase-table consist on the percentage of unique source or target phrases. Large phrase-tables
with low percentage of unique phrases will have more smooth probability distributions.

In Table 4.4 we show the standardized coefficients of the regression models using the
most significant predictors. We present the R2 results for the training (estimation) sample, as
well as the unseen test sets for Spanish-English, Arabic-English and Chinese-English.

Variable Regression coefficients Determination coefficients (R2)
ASG ATG ALK ADG train test-es test-ar test-ch

PNE 0.510 -0.420 0.103 0.973 0.973 0.966 0.893
PSU -0.976 0.953 0.959 0.923 0.983
PTU -0.974 0.950 0.953 0.974 0.928

Table 4.4: Regression results for entries in a phrase-table

First, remark how only four variables are enough to predict the phrase-table sizes and
percentage of unique variables. With these four variables we are able to determine at least
96% of the variance in the Spanish-English test set, a minimum of 90% of the variance for the
Arabic-English test set and 87% of the Chinese-Test set. Below we present the analysis for
each individual phrase-table variable.

Number of entries in a phrase-table
We observe that the total number of phrases depends on the number of target gaps in a
positive way. The more gaps we have in our alignment, the more entries in our phrase
table. In a similar way, the link density has a negative effect. Thus, the more dense our
alignment, the more extraction restrictions will be presented, which in turn will reduce
the number of phrase-pairs that can be extracted. Finally, diagonality plays a positive
role. Thus, the more monotone our alignment is, the more phrases we will be able to
extract. This phenomenon is depicted in Figure 4.5.

Unique phrases
In the correlation analysis of the previous section, we observed that the percentage of
unique phrases had a positive correlation with alignment link density. However, using
regression, we found that they are more dependent upon the alignment gaps. Further-
more, the percentage of unique phrase for source and target have a symmetrical depen-
dency upon the number of gaps. For the source unique, we observe that the number of
target gaps have a negative effect. This is because having more target gaps allows the
same source phrase to grows into target gaps without violating any restrictions. Thus as
the number of extracted phrases increases, the number of unique source phrases remains
the same. This lowers the percentage of unique source phrases. The same effect occurs
with the target gaps.
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Figure 4.4: Comparison of number of generated phrase-pairs by monotone and non-
monotone alignments. In the first case (a), the diagonality of this alignment is 1.0 and we
have ten generated phrase pairs. Four are of length 1x1, three of length 2x2 and two of length
3x3 and one of length 4x4. On the second case (b) we have a diagonality of 0.5 while the
number of generated phrases is only 8 (4+1+2+1).

4.4.2 Length of Phrases
Average phrase length is an important characteristic of a translation model. Having longer
source phrases allows us to translate an input sentence using longer (thus fewer) phrases. This
has the benefit that local reorderings (i.e. word swapping) are encapsulated inside the phrase.
Additionally, using fewer phrases to translate give us a phrase-translation boost. In other
words, by using fewer phrases to cover the input sentence, the cost of translation in terms of
reordering and phrase-counts can be reduced.

The target side phrase-length is not as important as the source counterpart. During
decoding, translation hypothesis length is taken care of by a word count penalty, which as
its name suggests, penalizes each word in our translation (to prevent too long translations).
Therefore, the role of the average target side phrase-length is (as we corroborate in next chap-
ter) not as relevant.

In Table 4.5, we present the results for our regression models. For source phrase-length
PSL we observe that for the Spanish-English samples, about 85% of its variance can be ex-
plained with two variables: the link density ALK and the alignment diagonality ADG.

Variables Regression coefficients Determination coefficients (R2)
ALK ADG train test-es test-ar test-ch

PSL -0.389 0.627 0.854 0.840 0.925 0.785
PTL -0.432 0.385 0.546 0.541 0.906 0.676

Table 4.5: Regression coefficients for phrase-table phrase length

Furthermore, we observe that for both variables (PSL and PTL ) the contribution of link
density is negative while the contribution of the diagonality is positive. The explanation for
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this phenomenon is direct. Having more link density increases the restrictions for phrase-
extraction. Thus, we will be able to extract fewer long phrases because restrictions make
harder to extract them.

On the other hand, having more monotone/diagonal alignments will allow us to extract
longer phrases because monotone alignments present fewer restrictions. This is exemplified
in Figure 4.4.
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(b) Non-monotone alignment

Figure 4.5: Phrase length and monotonicity. Having more monotone allow for longer phrases.
On the left, the diagonality is 1.0 while the average source length is 1.66. In the second case,
the diagonality is 0.5, while the average source length is 1.6

Finally, remark that the target-phrase length prediction model achieves lower determi-
nation. While this is not the best model we found, it is the simpler one. Other models excel
in predicting PTL for Spanish-English, but fail to predict for the Arabic-English or Chinese-
English and vice-versa. Therefore, we show the one that best represented every sample.

4.4.3 Translation Entropies
The probabilities in a phrase-table determine in a large measure which phrase-pairs will be
selected during decoding. Low probabilities increase the translation cost and reduce the like-
lihood of a phrase-pair to make it to the final translation. For our study, we used the average
entropy as a measure of the uncertainty of the model.

Measuring entropy

In Information Theory (Cover and Thomas, 1991; Manning and Schütze, 1999), the entropy of
a random variable is measure of uncertainty. When the entropy is large, the uncertainty about
the value of a random value is large. The entropy of a discrete random variable is defined by:

H(X) = �
X

x2X

p(x) log p(x) (4.2)

Entropy is always positive since 0  p(x)  1 and it is assumed that 0 log 0 = 0.
Entropy is a concave function with a maximum at the uniform probability value (i.e. p(x) =
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1/|X |; 8x 2 X ). Thus, there is more entropy where all events are equally likely to happen
(more uncertainty).

When dealing with conditional distributions it is customary to measure the conditional
entropy instead.

H(Y |X) = �
X

x2X

p(x)H(Y |X = x) = �
X

x2X

p(x)
X

y2Y

p(y|x) log p(y|x) (4.3)

We can think of conditional entropy as the weighted average of the entropy of p(y|x)
over all events x 2 X . In our case, we use the phrase-translation probabilities in place of
p(y|x) but also assume a uniform distribution over x (i.e. p(x) = 1/|X |), which is equivalent
to say that instead of using a weighted average, we simply use the arithmetic average. Thus,
the average entropy we measure is:

¯H(F |E) =

1

|E|
X

e2E

X

f2F

p(f |e) log p(f |e) (4.4)

In other words we are calculating entropy of p(f |e) for each of the English phrases e
and averaging it across the space of all English phrases E .

We perform this operation for each of the four translation probabilities presented in
Table 4.1.

Regression models

We used the alignment characteristics to predict the average entropy of the translation model
probabilities. In Table 4.6, we present the most significant predictors along with the R2 for
each model on unseen data.

Variable Regression coefficients Determination coefficients (R2)
ASG ATG ADG train test-es test-ar test-ch

Phrase translation entropies
PT1 0.978 0.957 0.960 0.992 0.917
PT3 0.975 0.951 0.962 0.992 0.963

Lexical translation entropies
PT2 -0.693 0.480 0.430 0.907 0.584
PT4 -0.580 0.336 0.266 0.505 0.604

Table 4.6: Regression coefficients for translation model entropies

Phrase-translation entropies
Similarly to what we observed in the correlation analysis, both phrase-translation en-
tropies PT1,PT3 have a strong influence from the alignment gaps. This behavior is
symmetrical to our observation in the percentage of unique phrases. For instance, PT1
has a strong positive influence from the source gaps ATG in the same fashion that for
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the percentage of unique target phrases PTU receives a negative influence. Roughly
speaking, our interpretation of these results is that the more gaps we have on source
alignment, we will have more unique source phrases while the number of target gaps
stays the same, lowering the percentage of unique target phrases. For the entropy of
p(f |e) (PT1) this means that we will have more foreign f entries per English phrases
e. This in turn will increase the entropy as the probability mass will be split into more
events, increasing uncertainty. The reverse effect would happen with the entropy p(e|f)
(PT3).

Lexical translation entropies
As anticipated from the correlation analysis, lexical translation entropies are more dif-
ficult to predict than their phrase-translation counterparts. From the results in 4.6 we
observe only modest prediction results. We found that the most predictive variable was
the diagonality of the alignment. While including other variables in the prediction mod-
els certainly increased the R2, the resulting models were instable (due to collinearity,
we observed standardized coefficients > 1). Thus, we keep more modest yet sensible
ones. The coefficients indicate a negative influence from the diagonality for both PT2

and PT4. Thus having more diagonality decreases the entropy in both variables.

4.5 Conclusions
In this chapter, we have revisited the relationship between alignments and phrase-tables. From
the results, we corroborated that density variables (gaps, links) have high correlation with
many phrase-table characteristics. Additionally, we discovered that the alignment distortion
also plays an active role in determining certain phrase-table variables. Furthermore, we ob-
served that the phrase-extraction algorithm plays well with alignment density making its dis-
tribution to carry to phrases. The case is different for alignment dimensions and alignment dis-
tortion. We observed that phrase-extraction changes drastically the expected behavior. Lastly,
we observed that alignment quality as prescribed by the F-metric has little relationship with
other phrase-table variables, suggesting that phrase-extraction exploits alignment structure
rather than alignment quality.

Doing a regression analysis, we corroborated these intuitions once again but tested them
with unseen data in different language pairs. For instance, we confirmed many intuitions
regarding phrase-table size and phrase-length and alignment density. Additionally, we ob-
served that alignment diagonality also plays an important role for these models such as av-
erage phrase-length. By testing our models in unseen Chinese-English and Arabic-English
data, we observed that many of the predictions hold well for different language pairs. This
highlights the fact that phrase-extraction does not depend of linguistic features but rather in
the structure of the alignment itself.

In this chapter, we also explored the relationship between the uncertainty in our trans-
lation features and the alignments used to compute them. Here, we discovered that the en-
tropy in the phrase-translation probability can be predicted very accurately using alignment
gaps. On the other hand, the lexical scores are more difficult to predict based simply on these
alignment features. While diagonality seems to predict about 30% in the entropy of these
translation features, the model is not complete. Using the knowledge gained in this chapter
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and the models obtained in the next chapter, we will be able to get the big picture about the
effect of alignments in machine translation.





Chapter 5

Predicting Translation Quality

Improving translation performance is a major goal for researchers in the MT area. In recent
years, the development of translation competitions (GALE, NIST, WMT) have highlighted the
importance of achieving better translation results. Thus, new techniques, translation features,
training schemes, etc. are constantly emerging.

More often, research is focused on tweaking parameters, enhancing training sets and
looking at the end-to-end translation quality metrics as a measure of performance. Nonethe-
less, little attention is paid to an equally important task: understanding how each of the com-
ponents in the complex MT systems affect performance.

In this thesis, our focus is to understand how different parts of an MT systems interact.
More specifically, we pay attention to the effect of word alignments, and how their structure
affect translation models and ultimately, translation quality. In this chapter, we analyze the
characteristics of the phrase-tables and translation hypotheses and how they relate to transla-
tion quality.

The correlation between characteristics of the translation model and the automatic qual-
ity metrics has previously been addressed by few researchers. For instance Lopez and Resnik
(2006) makes a study of different translation model (TM) features and their impact translation
quality. On the other hand Birch et al. (2008) studies different language-pair characteris-
tics and treat them as predictors of BLEU (Papineni et al., 2002) translation quality. Others,
have focused on identifying characteristics of the word alignments upon which these mod-
els have been built. Fraser and Marcu (2007) study how alignment quality (AER) is related
to its translation quality cousin BLEU. Lambert et al. (2009, 2010) analyze how alignment
characteristics correlate with translation quality.

In this chapter, we propose the analysis of the translation process into different stages.
First, we analyze translation quality in terms of the model characteristics. Then in Chapter 4
we study how alignment characteristics impact the models.

5.1 Methodology

In this section, we describe the techniques we used to analyze translation quality and build a
regression model based on our translation model translations’ characteristics.

65
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5.1.1 Key Terms
Before going into detail about our models, let us define some key terms:

phrase-table Also known as translation model, the phrase table is a collection of source
phrases paired with their corresponding target phrases, and several feature values. In
addition, phrase tables may include alignment information from the original alignments
upon which the phrases were extracted.

In the following figure, we can observe an example of a phrase-table.

translation hypothesis Translation hypotheses are the possible translations that can be built
using our models. Each of them is assigned with a translation cost given the differ-
ent scores of such translation according to the language model, the translation model
(phrase-tables), etc.

First-best hypotheses are those with the lower cost, and thus, the ones that result in the
output of a SMT system as the final translation.

There are several bits of information that can accompany a translation hypothesis: target
sentence, feature scores, alignment information, etc. Below we present an example of
the first and second best translation hypotheses for the Spanish source sentence: la bolsa
de praga terminó con menos puntos al final de la jornada .

0 ||| the stock exchange of prague ended with fewer

points at the end of the day |||

d: 0 -1.65846 0 0 -1.41736 0 0

lm: -70.432

tm: -6.47141 -20.0611 -3.55647 -19.6429 5.99938

w: -15 |||

-7.13615 |||

0=0 1=1,2 2=3 3=4 4=5 5=6 6=7 7=8 8=9,10 9=11 10=12 11=13 12=14 |||

0=0 1=1 2=1 3=2 4=3 5=4 6=5 7=6 8=7 9=8 10=8 11=9 12=10 13=11 14=12

Figure 5.1: Example a first-best hypothesis for the Spanish source sentence: la bolsa de
praga terminó con menos puntos al final de la jornada . Each the output is splitted into
different lines for visualization purposes. From top down, we have the fields: Source sentence
index (0), its corresponding translation. Next, we have the values for each of the model
features (distortion model d,language model lm, translation model tm, and word penalty w)
all in logscale. Additionally we have the accumulated weighted model score. Finally the
hypothesis alignment (source-target and target-source).

5.1.2 Measuring Variables
In our study, we measure different characteristics of the phrase tables and translation hypothe-
ses. While some of them are shared (specially those regarding underlying alignment variable
measurements), other are specific to each. Below, in Table 5.1 we present those variables
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Phrase Table variables Translation Hypothesis variables
var id description var id description

Phrase Table
entries

PSU srcUnique
PTU tgtUnique
PNE pt entries

Alignment
Density

PSG pt-sgap FSG fb-sgap
PTG pt-tgap FTG avg. target gaps
PLK pt-link FLK fb-link

Alignment
Dimension

PSL pt-SL FPSL avg. phrase SL
PTL pt-TL FPTL fb-TL

Alignment
Distortion

PCR pt-cross FCR fb-cross
PDT pt-diag FDT fb-diag
PDG pt-dist FDG fb-dist

Translation
Model
Features

PT1 pt-tm1 FT1 avg tm-1 cost
PT2 avg. entropy pt2 FT2 fb-tm2
PT3 pt-tm3 FT3 avg. tm-3 cost
PT4 avg. entropy pt4 FT4 fb-tm4

Language
Model

FLM avg. lm cost

Predictors

Translation
quality

BLEU BLEU
MET Meteor
TER Translation error rate

Table 5.1: Variables used in the translation quality prediction study

used in our prediction models, as well as our predictors (translation quality): BLEU(Papineni
et al., 2002), METEOR v1.3 (Denkowski and Lavie, 2011) and TER v0.7.25 (Snover et al.,
2006). We highlight in bold typeface those variables that resulted in significant results. For
further reference about each of the variables, please refer to Annex B where a more detailed
description of each variable is provided.

5.1.3 Finding a Regression Model
In order to estimate a multivariate regression model when its specification is unknown (i.e.
we do not know which variables belong to the model), there are several techniques that are
commonly used (Hair et al., 2010; Johnson and Wichern, 2002). First, we have a combina-
torial approach, which search among all possible combination of independent variables. The
best example of this kind of approach is the all-possible-subsets regression. Unfortunately
this approach quickly becomes impractical as the number of possible predictors grows ( we
would search among 2

|X| where |X| is the cardinality of our predictor set).
The other category of model specification techniques are known as sequential search

methods. These methods provide an objective function for selecting variables ( i.e. the subset
that maximizes the prediction) while employing the smallest possible number of variables.
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Examples of this category are the Forward Addition ( where we start with an empty model
and at each iteration the most predictive variable is added), the Backward Deletion (start with
an full model, and iteratively delete the least significant variable), and the Stepwise Estimation
(a mixture of Forward-Backward estimation).

More specifically, the algorithm for the Stepwise Estimation, is the following (Hair et al.,
2010):

1. Start with a simple regression model of only one predictor e.g. Y = b
o

+ b1X1, where
X1 is usually the independent variable with the highest correlation with the dependent
variable.

2. Examine the partial correlation coefficients to find additional independent variables that
explain the largest statistically significant (to a threshold level p

enter

) portion of the
unexplained variance. Add the most significant variable to the model.

3. Recompute the regression equation using the newly added variable. Look for the partial
p-value (F-statistic) of the previous variables in the model. Remove the one with the
lowest p-value below a threshold level p

out

.

4. Continue the procedure, adding independent variables until none of the remaining can-
didates are statistically significant

While stepwise regression can be very useful during specification stage, there are several
caveats that need to be addressed. For instance, multicollinearity (i.e. predictors that are
highly correlated) can obfuscate the effect of one predictor in favor of the other. Then, if one
of those predictors enters the model, it is very unlikely that the other will be taken into account
as well. Thus, one must also assess the possibility of collinearity and its impact to the model.

Another critique that can be raised to this type of method is that consequently applied
significance tests can inflate Type I error. To alleviate this problem, it is suggested to use
more conservative thresholds. For our research we used p

enter

= 0.01 and p
out

= 0.05 as
thresholds.

In addition, to test the generalization of our models and detect any capitalization of sam-
pling error (over-fitting), we performed prediction tests with unseen data using the regression
coefficients for each model.

5.2 Experimental Setup
In this section we outline the configuration of our experiments including the translation sys-
tems used, the datasets and the sampling techniques used.

5.2.1 Data and Sampling
Data Sets

For this analysis, we used a variety of different test-sets available for the Spanish-English
translation task for the WMT 2011 competition1 as well as previous years. For Chinese test

1Data can be obtained directly from http://www.statmt.org/wmt11/

http://www.statmt.org/wmt11/
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data, we used the sets from NIST Open MT evaluation 2. For Arabic, the test sets used were
extracted from GALE3 evaluation data. The statistics for these sets are summarized in Table
A.2.

Sub-document Sampling

In their majority, translation metrics are designed to evaluate complete documents. BLEU for
instance, rely on aggregate n-gram matches for the whole document. As such, it is deficient
as the sentence level. To better appreciate the effect of translation model into translation
quality, we used several sub-documents, long enough to provide accurate translation stats, but
short enough to allow us to appreciate difference between different translation models. Sub-
document splitting is a known technique that has been used previously for confidence interval
estimation (Koehn, 2004b; Guzman and Garrido, 2008). Lengths of sub-documents vary, but
it’s been reported around 50 test sentences per document. In our study, we chose to use a
sub-document size of 100 translation sentences to get smoother results.

Train and Test

As mentioned before, we used the Spanish-English language pair for model estimation (train-
ing). Additionally we used test sets from Spanish-English, Chinese-English, and Arabic-
English language pairs. For the training part, we used three sub-documents of 100 sentences
each per document-set for training. For testing, we used one sub-document of the same size
from each Spanish document set. For Arabic test, we used 5 documents from each of the
document sets. For Chinese, we used 2 sub-documents from each of the document sets.

The final representation of document sets in our training and test samples are summa-
rized in Table A.2

Systems

For Spanish-English experiments, we used different translation models build upon differ-
ent alignments. The aligners used for these systems were the discriminative aligner (DWA)
(Niehues and Vogel, 2008) with different density thresholds (Guzman et al., 2009)(0.4,0.5,0.6,0.7)
to have a variety of dense and sparse alignments. The DWA aligner was trained using hand
aligned data from the EPPS(Lambert et al., 2006) dataset.

Additionally, we used the symmetrized GIZA++ alignments using the heuristics grow-
diag , grow-diag-final and grow-diag-final-and.

For the Chinese and Arabic test sets, we used the grow-diag-final symmetrized align-
ment system. For further information about the systems’ training, please refer to Appendix
A.

2See http://www.itl.nist.gov/iad/mig/tests/mt/
3
http://projects.ldc.upenn.edu/gale/

http://www.itl.nist.gov/iad/mig/tests/mt/
http://projects.ldc.upenn.edu/gale/
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5.2.2 Data Measurement and Consolidation
For each of our phrase-tables, we filtered them to each of the sub-documents. I.e. from the
whole phrase-table, we kept only those entries which had a match in the corresponding sub-
document. In practice, the filtered phrase-table has all the information needed by the decoder
at runtime. From the deployment perspective, filtered phrase-tables have the advantage of
saving the decoder’s footprint. Additionally, they represent the search-space available to the
decoder given an input document. In this study, we are interested in the characteristics of this
search space as well as the characteristics of the translation hypotheses resulting from using
these filtered phrase-tables.

For that reason, we filtered each of our seven phrase-tables to each of the different sub-
documents. Next, we used the filtered phrase-tables to translate their corresponding sub-
documents. Additionally, we evaluated the quality of each of the translations. Finally, we
formed a vector for each sub-document/phrase-table combination with the following form
[PT, FB,Q] where PT stands for the variables related to the phrase-table and FB for the
variables regarding the first-best translation hypothesis and Q for their corresponding transla-
tion quality.

In this scenario, our total data points consisted in 7x3x9 for training (Es), 7x1x9 for
Spanish testing, 1x6x4 for Arabic testing and 1x8x4 for Chinese testing.

5.3 Experimental Results
In this section we present the findings of our model building along with their interpretation
and some thoughts on the actions we could follow to improve translation. In the first part,
we present the general models obtained for the whole set of documents. We discuss their
robustness and predictability not only for Spanish but also for Arabic and Chinese. In the
second part, we present refined models adapted to ’easy’ test sets and tougher ’medium’ and
’hard’ test sets. There, we discuss the increase of predictability obtained by better targeting
our models. Also discuss the trade-offs of such refinement.

5.3.1 General Model
While the use of stepwise regression is useful for discovering models where a there is no
’strong’ theory about the dependency between variables, it does trend to ’capitalize’ on sam-
pling error. To avoid this, we tried several runs of the algorithm, deleting the most predictive
variables from the pool, and running the algorithm again. The best results on the overall data
are presented below.

BLEU

In Figure 5.2 we present the results for our model. On the top, we present the predictors
present in the final model along with their standardized regression coefficients to facilitate
the comparison among them. On the bottom part, we present the regression determination
coefficient (R2) for the training model (tra) at each of the iterations, after including one by
one each of the most significant variables. These results represent the amount of variation that
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can be explained by the regression model. Additionally, we present the determination for the
unseen Spanish(es), Arabic (ar) and Chinese (ch) test sets.
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Figure 5.2: General model for BLEU

� Model Analysis
If we regard the lower part of fig. 5.2 we observe the predictive behavior of the regres-
sion model at each stage of our stepwise search. From this graph, the behavior of our
model depends largely on the language pair. For instance, this model was estimated on a
Spanish-English sample, and we observe that the inclusion of each variable in the model
(tra) has also a positive effect on the unseen Spanish test set (es). The total variance ex-
plained by the model for this language pair is around 55%. For the Arabic-English
test set (ar), the story is a bit different. The best prediction can be achieved using only
the average entropy of the direct lexical translation probability PT4 which accounts for
about 70% of the variability. From there, every variable included in the model degrades
the prediction, with the exception of the average entropy of the reverse lexical transla-
tion probability PT2 and the language model cost FLM. The final model determination
is around 50%. For the Chinese-English test set (ch), only two variables degrade pre-
diction: the average number of alignment gaps in the hypothesis FTG and the language
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model cost FLM. Except from that, each variable included, has an important contribution
in predicting BLEU. The final determination is around 55%.

� Model Interpretation
From analyzing the regression coefficients of the model (displayed on the top of the
figure) we draw the following conclusions

1. The factor with the strongest effect comes from the average entropy of direct
lexical translation PT4. It is a negative effect, which means that the more entropy
of the p

lex

(e|f) feature in our translation model, the worse our translations will
be. Large entropies in such feature are associated with very similar lexical scores
(probabilities) for different target phrases given a source phrase. In a low entropy
setting, we would have either few translation options or a target phrase with high
lexical score for each source phrase. Therefore, having less determination in our
scores, will hurt BLEU.

2. The second strongest effect is the number of entries in the phrase table PNE.
This means that the more entries we have, the better quality in translation. Since
the entries in the phrase tables are constrained on the source side (because of the
filtering) this means that having larger phrase tables implies having more target
side alternatives.

3. There is a positive effect of the average entropy direct lexical translation p
lex

(f |e)
PT2. As opposed to the effect of PT4, this one means that the more entropy we
have for this feature, the better translations we will get. In other words, for each
target phrase we want to have as many correspondences as possible on the source
side, each one as likely. Thus, all things equal, phrase-tables with a smaller num-
ber of unique target phrases will perform better. It is often the case that when we
have many unique target phrases, many of them are rare. And it is often the case
that these rare phrases are noisy.

4. The hypothesis target side gaps FTG has a negative effect on the BLEU score.
This means that, the more unaligned words are in the target side of the phrases we
used, the lower the quality of our translations will be. This is in accordance with
the study we developed in (Guzman et al., 2009) and discussed in next chapter.

5. Lastly, the per word language model cost FLM has a slight negative effect. This
means that the more ungrammatical or bad English our translation is, the worse it
will fare with BLEU.

METEOR

In Figure 5.3, we can observe the results of our model for the MERT metric. While there are
some similarities to the BLEU regression model, the results do not generalize as well.

From the bottom of the graph, we observe a mix of results for the training ad testing
sets. While the variables included in the final model are the same as the ones included for
BLEU model, the order in which they were added differs significantly. For Spanish-English,
with exception of PT4, every variable improves the prediction of the model, reaching a final
R2 of about 40%. For Arabic-English, every variable included has a positive effect. The
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Figure 5.3: General model for METEOR

most important feature seems to be PT4 (as with BLEU). The final prediction lies around
40%, which is lower than for BLEU. For Chinese-English, the only three features that seem to
improve predictability are PT4 and PT2 and FLM. Unfortunately, the final model only accounts
for about 30% of variance, which is much lower compared to the results observed for BLEU.

Similarly to BLEU model, the direction and magnitude of the coefficients is similar. The
main difference lies in the magnitude of the coefficients, but the order of importance remains
the same.

TER

The model for TER is shown in Figure 5.4. It is simpler than the previous models, including
only four variables. However, it reaches only about 35% of accuracy on the test sets.

From the bottom graph, we observe a consistent behavior between the Spanish-English
train and test sets. Each variable adds a some prediction. Nonetheless, the last two variables
FTG and PT2 seem to be more important for the test set. The behavior for Arabic-English and
Chinese-English test sets is very similar. PT4, PNE and PT2 increase the predictability while
FTG has a negative effect.
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Figure 5.4: General model for TER

Since TER is a negative measure (less is more), opposed to BLEU or METEOR, the
results have similar interpretation as for the previous metrics. Notice that the language model
cost FLM does not appear to have a significant effect in predicting TER.

Discussion

In Table 5.2, we summarize the effects of the phrase-table and hypotheses in translation qual-
ity. The most important effects are PT4 and PNE. Medium strength effects are PT2 and FTG.
Finally, we also have a weak effect from the FLM only for BLEU and METEOR. From these
results, we can draw some conclusions. First, the most relevant effects are related to the trans-
lation model. Thus, it is important to have a well defined translation model (PT4,PT2), with
many options (PNE). Additionally, it is also that our translations have good word alignment
support (FTG) and are in correct English(FLM).

While these findings could be straightforward to anyone with long standing record of
empirical work, this is the first study (to the best of our knowledge) that actually uses statistical
methods to corroborate the intuition. Furthermore, this study showcases the relevance of word
alignment into translation. As we have seen before, there are several alignment characteristics
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BLEU METEOR (-)TER

PT4 - - - - - - - - -
PNE +++ +++ ++
PT2 ++ ++ ++
FTG - - - - - -
FLM - -

Table 5.2: Effects of several variables in translation quality. Positive effects are noted with a
(+) sign, while negative effects with a (-). We use the inverse effects of TER for comparison
purposes.

that impact the size of a phrase-table, and the quantity of unique source and target entries.
This was demonstrated showcased in the previous chapters. Additionally, the relevance of
alignment gaps (FTG) was also outlined. In Chapter 6 we measure the impact of giving the
decoder information to discriminate between hypotheses based on the number of gaps in their
alignment.

5.3.2 Refined Models

From the previous results, we observed that the general model performed well on BLEU but
not so well on METEOR nor TER. When we performed a careful analysis on the response
variables, we observed that there is an evident clustering of translation quality according to
the set documents we are dealing with. In Figure 5.5 we show the kernel density estimation
(kde) of the translation metrics for the Spanish-English train and test sets.

A kde is analogous to an histogram in the sense that shows us the distribution of the vari-
ables. However it is calculated using a gaussian smoothing, revealing a continuous distribution
that does not suffer from the problem of binning. Here we use it to show the multi-modality
of the distributions.

From the figure we observe that while the BLEU distribution has three evident peaks,
corresponding to easy, medium difficulty and hard translation tasks, the overall distribution
is more symmetric than those of TER and METEOR. This explains why the general models
perform better for BLEU than for the other metrics. Furthermore, observe that in both sets,
METEOR and TER have roughly two sets: a medium-hard and an easy set of translation tasks.
When we analyzed the document sets to which these tasks belong, we discovered a natural
per document set division. Table 5.3 we present the manual labeling of the document sets.

5.3.3 Refined Models: Easy Set

In this section, we present the results of training our stepwise regression algorithm in the easy
Spanish-English set, and testing on easy Spanish-English and both complete Arabic-English
and Chinese-English, to test generalization.
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Figure 5.5: Kernel density estimation for BLEU, METEOR and TER for the Spanish-English
data sets. The top row represents the distributions for the training sets, while the bottom row,
the test sets. From left to right, we show the distributions for BLEU,METEOR and TER.

BLEU

For the easy set, the BLEU metric is relatively easy to predict using few variables. In fig. 5.6
we observe the results for this model.

� Model Analysis
This model is relatively simple. Two variables help us to predict very accurately the
Spanish-English BLEU metric. By using only the FLM we can predict about 60% of the
variability. Incorporating the FTG we get up to 75% accuracy. Performance differs for
Arabic, where only FLM give us about 60% of determination but FTG does not contribute
much. The story is very different for Chinese-English, for which the models does not
hold well.

Spanish classification

ac-test medium
nc-test2007 easy
nc-test2008 easy
newstest2009 hard
newstest2010 hard
test2006 medium
test2007 medium
test2008 medium

Table 5.3: Classification of documents according to their nature
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Figure 5.6: Model of BLEU for easy set

� Model Interpretation
This model explains BLEU as having a large penalty from the per word language
model cost FLM. This means that the more fluent our translation hypotheses are, the
better quality they will have according to BLEU. Additionally, we observe a negative
effect from hypothesis target gaps FTG. This means that the more gaps we have in our
translation, the worse it will be. These results are intuitive: first FTG can be regarded as
an indicator of the quality of the translation model while is FLM represents the influence
of the language model. These two components are the canonical components of any
machine translation system. However, the relevance of FTG is noteworthy.

METEOR

The model for METEOR is very similar to the one for BLEU. However, it performs much
better for Spanish-English. The results for this model can be observed in Figure 5.7.

For Spanish-English, this model reaches high accuracy using two variables. Each one
increases the determination coefficient on the test set, reaching to an R2 of 85%. For Arabic-
English, only the language model FLM seem to help predict METEOR. The inclusion of FTG
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Figure 5.7: Model of METEOR for easy set

variables only hurts prediction. The final model accuracy is about 60%. For Chinese-English,
the model is only able to make poor predictions, accounting for about 10% of the variance.

The direction and magnitude of the regression coefficients are very close to the coeffi-
cients for BLEU, thus receive a similar interpretation

TER

The last of the models for easy data, the TER model includes the same two variables as the
previous models. In this case, since the TER variable is measured inversely, the direction of
those variables in reversed. The general outline of the model is displayed in Figure 5.8.

From the figure, we observe that the behavior is very similar to the BLEU case. Only
that in this case, Arabic-English reaches about 45% in accuracy while Chinese-English receive
10%. The interpretation in this case is similar. The more alignment gaps we have in our
hypotheses, the more translation error we will see. On the other hand, the less fluent our
English constructions are, the more penalized our translation will be.
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Figure 5.8: Model of TER for easy set

Summary

So far, we have observed that when dealing with an easy document, that is, one document
with long source sentences, the models that better predict our translation quality variables can
be summarized as in Table 5.4.The prediction levels are substantially higher than the general
models.

BLEU METEOR (-)TER
FLM - - - - - - - -
FTG - - - - -

Table 5.4: Summary of effects for the easy document set. The (+) and (-) signs summarize the
strength of the effect. (+) stands for low, (++) medium and (+++) for large.

We observe in every case, two components, the language model and the alignment gaps.
Notice also that these models fit very well Spanish-English and Arabic-English. Chinese, on
the other hand, performs very well. The immediate justification for this divergence could
reside in the absence of any distortion component in the model. While Arabic-English and
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Spanish-English are strongly monotonically aligned, Chinese-English has more long-distance
re-orderings which do affect translation quality.

5.3.4 Refined Models: Hard
For Spanish-English, hard and medium difficulty models are those which are shorter on the
source side. Generally speaking, models for this set have a more ’traditional’ decomposition,
with variables such as the translation model cost or the language model cost as their main
components. In the following sections, we analyze each one of these models and provide a
brief interpretation.

BLEU

Similarly to the models for the easy set, the BLEU model for the harder set also generalizes
well for the Arabic-English set. In fig. 5.9 we observe the results.
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Figure 5.9: Model of BLEU for medium-hard set
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� Model Analysis
This model generalizes well for the Spanish and Arabic test sets. We observe that each
of the variables in the model adds some prediction to the sets. The final models account
for about 80% and 70% of the variance of Spanish and Arabic, respectively. For the
Chinese case, only the average source phrase length FPSL seems to have any predictive
value. The final prediction is about 15%.

� Model Interpretation
For this model, the per word language model cost FLM has the largest negative effect.
Therefore the lower our cost per word is, the better our translation will be evaluated. In
other words, the more grammatical our translation is (i.e. good English), the better. The
next factor is the per phrase direct phrase-translation cost FT3. In this case, the variable
has a small negative effect. This means that the higher phrase translation probability,
the better our translation will be. Last, we have the average source length of used
phrases FPSL. This indicates that the longer the phrases we use to decode the source
sentences, the better our translation will be. All things equal, this variable can also be
interpreted as a requirement to use the fewer possible number of phrases to decode a
source sentence.

METEOR

For METEOR the variables in the model are the same as for BLEU. As in the easy set, the level
of accuracy for METEOR is higher than those for BLEU. For Spanish-English, we observe
close to 90% accuracy, while for Arabic-English it is around 75%. For Chinese-English, the
total model determination is of 20%.

TER

From Figure 5.11, we observe that the model for TER is slightly different from the model
for BLEU and METEOR. Instead of a long-phrase boost FPSL, it uses the FT1. Notice that
this model has lower accuracy as well. For Spanish-English and it only reaches about 50% of
accuracy. For Arabic-English, the most predictive feature is the Language Model, reaching for
about 50%. The final model has accuracy of 45%. The Chinese-English case, as previously
observed, fits poorly, with about 20%.

The interpretation of this model is similar to the previous. Notice that TER has a ’boost’
from reverse phrase translation cost . This might seem contradictory to the FT3 penalty. Our
take on this phenomenon is that while TER prefers low cost Foreign-to-English phrases p(e|f)
it actually prefers high cost in the English-to-Foreign p(f |e), thus penalizing phrases that have
high phrase translation probabilities. This is in accordance to what we discovered previously
for the general models, where we discovered a boost for high entropies on the PT2 feature.

5.3.5 Summary
The models for the medium-hard document sets have some common characteristics across
quality metrics. These models are more intuitive than the previous. They represent they ac-
commodate the classical components of any SMT system. First, we see a strong contribution
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Figure 5.10: Model of METEOR for medium-hard set

from the language model. Then we observe that the phrasal translations also come into play.
While in the previous models the importance of the translation model was represented by
simpler features (such as FTG), in this case the phrase translation features gain more impor-
tance. Additionally, for BLEU and METEOR, we observe the length of the used phrases being
important.

5.4 Conclusions
In this Chapter, we have developed several regression models that effectively allow us to
predict translation quality in terms of the characteristics of the translation model (phrase-
table) and translation hypotheses characteristics. In Table 5.6 we present the summary of our
findings.

What we observed is that when aiming for a general model, the most important charac-
teristics for translation quality come from the phrase table. In short, we need to have large
translation models, that are well defined. We need to have good alignment support, to re-
duce the number of alignment gaps that go into our translation. When dealing with target
models, we discovered that short sentences are harder to translate. While experience tells us
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Figure 5.11: Model of TER for medium-hard set

that individual shorter sentences are easier to translate, at the aggregate level we observed the
opposite. Documents whose average length is shorter, trend to fare worse. The explanation is
that having longer sentences allows us to have a broader span of translation options at decod-
ing time. Another explanation might come from the nature of the data, it could be the case
that the harder documents belong to a different domain that just happen to be shorter. In any
case, by targeting our models to describe more precisely those samples, we obtained a better
description of translation quality.

When dealing with difficult tasks, translation quality comes determined by the cost of
the language model and the direct phrase-translation feature and the length of the source side
of the phrases sued. In other words, when we dealt with shorter sentences, we observed that
we need to use as few as possible phrases to translate, while having a fluent output that also
represents well the meaning of the original sentence.

When dealing with longer translation tasks, the situation is slightly different. We need
that our final translation is fluent (longer translations could degrade quickly because of re-
orderings). However the translation model score does not have a significant effect. Instead,
we observed that the aggregate number of alignment gaps help to discriminate between good
and bad translations.
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BLEU METEOR (-)TER
FLM - - - - - -
FT3 - - - - -

FPSL + +
FT1 +

Table 5.5: Summary of effects for the hard document set. The (+) and (-) signs summarize the
strength of the effect. (+) stands for low, (++) medium and (+++) for large.

General Easy Hard
B M (-)T B M (-)T B M (-)T

Phrase table

tm
PT4 - - - - - - - - -
PNE +++ +++ ++
PT2 ++ ++ ++

Hypotheses

tm
FTG - - - - - - - - - - -
FT3 - - - - -
FT1 +
FPSL + +

lm
FLM - - - - - - - - - - - - - - - -

Table 5.6: General summary of the regression model with the translation model and hypothe-
ses effects.

We measured the generalization of these models in terms of how well they helped to pre-
dict translation scores for unseen data in several language pairs. We observed that the generic
models make weaker predictions that hold across language pairs. On the other hand when
using the targeted models, we observed that Arabic-English and Spanish-English performed
very well while Chinese-English performed poorly. We attribute this to the lack of reordering
as a predictor. While Arabic and Spanish align more monotonically to English, Chinese has
more long-distance re-orderings. Lack of fit on unseen data was a trade-off we expected when
doing target models for Spanish. Surprisingly, Arabic performed better than expected.

Finally, the results from this study set the grounds for further alignment research. We
demonstrated that alignment related features impact translation quality. Thus, we need to use
that information to improve alignments and translation. In the next chapter, we observe how
important characteristics of the phrase table are closely related to the alignment structure and
quality.



Chapter 6

Improving Machine Translation with
Alignment Structure

In the previous chapters, we observed that certain alignment structural features impact the
consolidation of a translation model. Furthermore, we have discussed how those effects can
propagate up to translation performance.

In order to have increased control over the structure of the alignments in the final trans-
lation, we propose two alternatives to enhance the use of alignment structure for machine
translation. Of particular interest is to provide means to control the number of words left
unaligned, which according to our observations, determine greatly the characteristics of the
translation model. Thus, the metrics we propose control that characteristic at two different
stages: alignment training and decoding. On one hand, we present two new alignment qual-
ity metrics, which make use of the alignment structure the gaps to calculate the final quality
score. Additionally, we introduce the alignment gap feature for decoding and its experimental
translation results presented in (Guzman et al., 2009). Finally, we combine and compare both
strategies and their effects in a final experiment.

The remainder of this chapter will be organized as follows: On the first section we
describe in detail our proposed alignment metrics, along with the experimental translation
results for alignments trained to maximize this metric. Next, we describe the new translation
features used during decoding and the experimental results. Finally, we mix-and-match these
enhancements and compare the results when they are used in isolation and combined.

6.1 Improving Word Alignment for Phrase-Extraction
As we have observed previously, there is a strong influence from unaligned words into how
the phrase-translation model. While there is no rule-of-thumb to whether we should have
sparser or denser alignments, conventional wisdom indicates that we should have alignments
as close to the Human Aligned reference. In Chapter 3, we confirmed that intuition when
we observed that phrases extracted from hand alignments are perceived as having better qual-
ity than phrases from automatic alignments. Additionally, we observed that human-alignment
generated phrases with unaligned words are perceived as having lower quality when compared
to phrases without gaps. We understand that quality and structure both play an important role

85
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in how the final translation model will be estimated. Therefore, we propose two new align-
ment metrics that take into account more of the alignment structure, playing special attention
to the negative space of the alignment matrix.

Traditional alignment metrics such as precision, recall, the F-measure and AER focus
on quantifying the matches of true positive instances (i.e. the links in the alignment) while
leaving the true negative instances out of their computation. In other words, they focus on
how the positive space of an alignment matches the positive space of the reference. As shown
in Chapter 3 optimizing towards maximizing these metrics leads to alignments that are less
dense than the reference. Thus, optimization encourages alignments to be more precision-
oriented. In some situations, more precise alignments are preferable because they result in
larger phrase-tables which result handy when dealing with low coverage situations. In other
situations, recall oriented alignments will be preferred because their translation models will
have lower entropy.

In Chapter 3, we observed how word alignments have an impact on how the translation
model is estimated. In addition, the quality of phrases is related to the alignment quality and
the alignment structure. Therefore, to have better quality phrases, we need to make alignments
more structurally-like to hand alignments.

There are several ways to accomplish this task. On one hand, we can devise a heuristic
process (much like symmetrization heuristics) which takes into account the structural charac-
teristics of the alignments to decide which links are added to the final alignment. Also, we
can integrate more structural characteristics into a generative alignment model (like IBM) to
let the algorithms discover the best alignments automatically. Another alternative is to create
new alignment quality metrics that take into account not only the number of link matches but
also some of the alignment structure.

We favor the last alternative because a new alignment metric can easily be coupled
with different discriminative alignment frameworks. Furthermore, a new metric can be use
to compare and evaluate the output of several systems, while taking the advantage of human
annotated data.

In this section, we explore two new alignment metrics that take into account more of the
structure of the alignment. First we make a modification to the F-metric (AER) to include the
number of unaligned words into the match count. Additionally we propose the use of Balanced
Accuracy (BA) as an alternative metric in which the positive instances in the learning problem
(i.e. links) have equal importance as the negative instances (i.e. voids in the alignment matrix).
Below we give a brief explanation of each.

� F0 score
The traditional F1-score uses the harmonic mean of Precision and Recall to compute
its score. In other words it is defined as F = (R�1

+ P�1
)

�1. In terms of a confusion
matrix, the F-score is computed as:

F =

tp

2tp+ fp+ fn
(6.1)

where tp are the true positives, fp are the false positives and fn are the false negatives.
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Unaligned words or alignment gaps are also known as NULL-alignments. They get
their name from the generative models where an explicit NULL word was considered
during training to model the probability of a source word to be aligned to no word on
the target side. It was also said that the source word in question had a zero fertility.
Different views from the same phenomenon are depicted in Figure 6.1.

(a) Traditional view (b) Null-link view

�

��

���

����

�	 �	 
	�� �� �� ����

����

(c) Alignment matrix view

Figure 6.1: Three different representations of the alignment gaps/ NULL-links .

In the traditional link-representations, unaligned words have no link with words on the
opposite side (e.g. French words ne, du.). In the matrix representation of the alignment,
unaligned words are represented by an empty column. In the IBM-model’s view, they
are represented by an explicit link towards a NULL word. Inspired by this last repre-
sentation, we introduce the F0 (F-null) metric, which uses null links in the computation
of the quality score. It is defined by:

F 0
=

tp+ tp0

2(tp+ tp0) + fp+ fp0 + fn+ fn0
(6.2)

Where tp0, fn0 and fp0 stand for the matches (non-matches) of null links.
By taking into account the positive and the null link matches this metric has the advan-
tage of incorporating some of the alignment structure into the quality score.

� Balanced accuracy
Besides Precision and Recall (also called sensitivity), Specificity is another metric
which is typically used in medical domain applications. Specificity is defined as the
amount of true negatives by the amount of negatives in the gold standard. Thus it takes
into account the negative space in our alignments. It is defined by:

sp =

tn

tn+ fp
(6.3)
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While sensitive (recall) oriented alignments trend to be more dense, very specific align-
ments would only have the opposite constitution. To balance these two quantities in
equal terms, the Balanced Accuracy is defined as the average of the two.

BA =

1/2tp

tp+ fn
+

1/2tn

tn+ fp
(6.4)

Balanced accuracy gives equal importance to the positive matches as to the negative
matches. In other words, its not only concerned of the true space, but also to the struc-
ture of the alignment defined in the negative space. As we have observed before, the
sparsity of an alignment is also an important characteristic for phrase-extraction.

6.1.1 Alignment Results
We used the new alignment metrics to tune the parameters of the Discriminative Word Align-
ment (Niehues and Vogel, 2008) to measure the effectiveness of these metrics in discrimi-
native training. Our goal was to determine how the resulting alignments compare the AER
(F-measure) tuned alignments in terms of alignment quality and alignment structure.

Traditionally, the tuning for DWA alignment comes in two stages: first a maximum like-
lihood tuning of parameters is performed. Then in the second stage, the parameters (scaling
factors) are fine-tuned towards a second alignment metric as this is reported to lead to the best
results (Niehues and Vogel, 2008).

We performed an experiment in which our baseline was the AER metric tuning. We
compared it to the F0 and BA tuning measures based on the alignments produced for a unseen
test sample.

Alignment Quality

In Table 6.1, we present the quality results for each of the alignments tuned to different met-
rics.

Alignment Quality
Tuning metric P R F P0 R0 F0 SP BA

F 85.0 62.8 72.2 79.4 61.3 69.2 99.4 81.1
F0 85.6 62.6 72.3 79.6 61.4 69.4 99.5 81.0
BA 73.6 66.6 69.9 70.7 64.6 67.5 98.8 82.7

Table 6.1: Alignment quality metrics for each of the different alignments: F-tuned alignment
(F), F0 tuned alignment and Balanced accuracy (BA) tuned alignment. The metrics considered
are precision (P), recall (R), F-measure (F), the null-link metrics (F0,P0 and R0), Balanced
accuracy (BA) and specificity (SP). We present in bold font the best results for each metric.

Notice how optimizing towards different metrics yields slightly different alignments.
For instance, alignments tuned towards F0 are more precise than its counterparts in terms of
both P and P0. However the gains are larger for P. This indicates that in order to achieve
better F0 score and have more NULL link matches, the aligner omits more true links. As
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expected, this results in an slight increase of the F0 score. Additionally it performs better on
the F-score when compared to the F-tuned alignment. Finally notice how it has the highest
Specificity. This means that this alignment accurately improves the rate of true negatives
(non-links) matches.

The BA tuned alignments have the highest BA score. They also perform significantly
better recall, both R and R0. However they report a significant loss in precision, which hurts
the F and F0 scores.

Alignment Structure

In Table 6.2 we present the structural differences between the alignments and the reference.

Alignment Structure
ASG ATG ALK ACR ADT ADG

Reference 0.065 0.045 1.473 2.121 3.910 0.906
F 0.082 0.047 1.099 0.744 2.792 0.917
F0 0.088 0.051 1.088 0.725 2.767 0.917
BA 0.071 0.038 1.357 0.953 3.238 0.921

Table 6.2: Alignment structure metrics for each alignment. In bold-font we present each of
the results which are structurally closer to the hand alignment. In slanted font, the results that
are remarkably high.

In terms of structure, we observe that the BA alignment is denser than its counterparts
and it is closer to the reference in several structural criteria. For instance, it has a rate of
source gaps ASG closer to the reference alignment and the lowest ATG from all the alignments.
Additionally its link density is closer to the link density of a hand alignment. Since it is more
dense, we also observe more crossing ACR and more relative distortion ADT. Surprisingly, it
has the highest diagonality overall.

As anticipated, the F0 alignments present more alignment gaps than the rest of the align-
ments, and their density is slightly lower than the F-tuned alignments. They also present the
less distortion overall both in terms of alignments crossings ACR and relative distortion ADT.

Summarizing, changing the tuning metric for discriminative alignments does have an
effect on the quality and structure of the resulting alignments. For instance, we observed that
including NULL-links in the computation of the F-score yields more precise alignments which
leave more unaligned words. In terms of F and F0 quality, they present a slight improvement
when compared to the regular F-tuned alignments.

On the other hand, having alignments tuned towards Balanced Accuracy (which take
into accounts the true negatives of the alignments) yields more recall-oriented alignments,
which in terms of structure are more similar to the human generated data. As we can expect,
these alignments will yield very different translation models. As predicted by our models in
chapter4 these alignments also yield very different phrase tables. Taking as a reference the
F alignment which has 20 million entries, the BA alignment which is more dense, yields a
shorter phrase table with only 15 million entries. On the other hand the F0 alignments yields
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a larger phrase table with 21 million entries. In the next part we will present the translation
experiments.

6.1.2 Translation Experiments
As a final experiment, we used the phrase-tables from each alignment for translating un-
seen data. The optimization of each model was done using MERT (Och, 2003) to maximize
BLEU for the news part of WMT2008 test data (nw08). For translation we used two news-
cast datasets corresponding to years 2007 and 2008 of the WMT newscast test data (NC07,
NC08).The results of that experiment are summarized in tab. 6.3. For comparison, we in-
cluded the heuristic symmetrized alignment grow-diag-final-and.

BLEU METEOR TER
NC07 NC08 NC07 NC08 NC07 NC08

DWA-F 35.53 36.36 40.39 40.47 45.86 45.84
DWA-BA 35.15 36.03 40.00 40.13 46.47 46.36
DWA-F0 36.20 36.83 40.60 40.61 45.05 45.29

GDFA 36.14 36.75 40.42 40.37 45.11 45.36

Table 6.3: Translation results using four different models: A discriminative aligner tuned
towards three different metrics (F,F 0,BA) and a symmetrized alignment. The different evalu-
ation metrics used were BLEU, METEOR and TER

First, remark how the initial F-tuned alignment has some trouble translating these sets of
documents in comparison with the symmetrized alignment. However, including the NULL-
link information in the F-metric shows significant improvements not only with respect to
the baseline, but also with respect to the symmetrized heuristic. This behavior is replicated
in the different metrics. While it is expected that improvements for BLEU are the largest
(because the systems are optimized to maximize BLEU), observe how the DWA-F0 alignment
has consistent improvement across the different metrics.

The Balanced Accuracy alignment, which was structurally more alike to the human
aligned data, has the worse results of all systems. The results from these experiments are con-
sistent with the general predictive model that we obtained in Chapter 5. In fact, the correlation
between the obtained BLEU scores and the predicted scores are of 0.88. As we observed be-
fore, having more entries in the phrase-table is an important factor in obtaining better scores.
Thus, it is not surprising that the BA alignment obtained lower scores, given that its high
density alignment results in fewer translation entries in the translation model.

6.1.3 Conclusions
As a result of the analysis performed in the previous chapters of this thesis, we observed that
alignment structure is very important for the estimation of the translation model. To provide
a mechanism to better control the structure of such alignments, in this section we introduced
two new alignment quality metrics which take into account more of the alignment structure.
We introduced two new alignment optimization metrics: Balanced Recall and the F-0 metric
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which make use of NULL-alignment information. We observed that the F0-tuned alignments
present improvements in terms of precision with respect to the F-tuned alignments. Also, we
observed that the BA alignments are the most human-like in terms of structure. However, this
similarity turns out to be of little help for machine translation.

In terms of translation quality, the clear winner is the DWA-F0 alignment, which yields
consistent improvements across metrics.
While the original concern was to reduce the number of unaligned words, tuning towards a
metric that uses unaligned information yields a slightly larger number of unaligned words.
However, this alignment is able to obtain better results mainly due to the fact that it results in
a significantly larger phrase-table.

In the next section, we present experiments where we control the alignment gaps at
decoding time via an unaligned feature.

6.2 Improving Translation Using Alignment Gap Features
In Chapter 5, we observed that there are several features from the translation model that
predict well translation quality of translation hypotheses on a static scenario. We observed
how the translation hypotheses with more target gaps seemed to have lower translation quality.
Inspired by that fact, and to give the decoder more control over the gaps in the translation
hypotheses we introduce a new decoding feature that takes into account the alignment gaps
information and uses it dynamically at decoding time. As we will observe later, using such
feature enables the decoder to turn an originally liability ( more gaps meant less translation
quality) into an asset. The target gap decoding feature (h

ftg

) is defined as follows :
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Where eJ1 stands for the target phrase spanning from words 1 to J , fJ

1 stands for the
source word spanning from 1 to I , and l(i, j) is an indicator function {0,1} that tells us
whether there is an alignment link between word i and word j. By multiplying all (1� l(i, j))
for the same j we verify if the jth word is left unaligned. Thus, when calculating the feature
value for a full translation hypothesis, the cost will be:
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In the end, an optimization procedure (MERT) will set the optimal weight for w
ftg

based on a development (tuning) translation set. In the next part, we will discuss the results
of performing the optimization for these new features.

6.2.1 Tuning Weights for Quality
In this part of the analysis, we use the weights for the new features tuned by the Minimum
Error Rate optimization. For comparison, we used a set of different translation models, which
were generated from the alignments we had analyzed in previous chapter (DWA-4 to DWA-7,
grow-diag, grow-diag-final, grow-diag-final-and).
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For MERT we used the news-test for the WMT 2008. This dataset consists of News
data, which is considered out-of-domain for our translation models, which were trained on
Europarl, News Commentary and UN data. For further reference about the data please refer
to Appendix A.

In Table 6.4, we present the weights for each of the translation models used. Since each
of the optimization is performed independently (i.e. for each system and for each setting),
since adding one new feature changes the search space and thus, the optimizer might modify
the assigned weights for each feature. Therefore, we present the percentage of weight change
corresponding to this feature, as defined by:

�ŵ
ftg

=

�w
ftgP

wi2W |�w
i

| (6.7)

System w
ftg

�ŵ
ftg

(%)

DWA-4 0.107 19.80
DWA-5 0.059 8.17
DWA-6 0.092 17.68
DWA-7 0.050 11.12
GD 0.092 19.24
GDF 0.071 8.41
GDFA 0.132 21.45

Table 6.4: MERT-tuned weights for the FTG feature by system. On the central column
we present the nominal weights for the decoding feature. These weights are normalized soP

w

|w
i

| = 1. On the right column we present the percent of tuning weight change attributed
to this feature.

First of all, notice how all of the weights given to this feature are positive. This means
that the feature is acting as a boost rather than a penalty. In this new scenario, it uses the
gap information to discriminate good and bad hypotheses locally. In fact, decoder is using
the target gap-feature (as we will observe later on fig. 6.4) as a counterweight to phrasal
probability. By giving a boost to phrases-with gaps, it can then penalize harder other phrases
that do not have gaps, yet have low translation probability.

Also note that a substantial amount of the weight change for these systems comes from
the weight optimization for the newly added feature. For most of the systems, the percentage
of weight change due to the gap-feature is less than 20%.

In the next part, we will observe how the new feature contributes to the improvement of
the translation.

6.2.2 Translation Results
For this part, we used the models with the new features and the optimized weights to translate
several test sets. The considered documents were both in-domain Europal test-sets (WMT06,
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WMT07, WMT08), the also limited domain Acquis corpus (AC) and the News test set (NW09,
NW10, SC09).

The best scores for each document set are presented in Table 6.5. Notice that from all
the tasks available, most of the best results were collected by the DWA-5 translation model the
translation gap feature. And only one was obtained by the GROW-DIAG-FINAL symmetrized
heuristic without gap.

Doc Set best BLEU System Gap feature

AC 35.65 DWA-5 yes
SC09 26.78 DWA-5 yes
NW09 25.98 GDF no
NW10 28.82 DWA-5 yes
WMT06 30.70 DWA-5 yes
WMT07 30.40 DWA-5 yes
WMT08 30.73 DWA-5 yes

Table 6.5: Best scores per document set obtained by system/feature combination

The individual BLEU gains scores between the translation models which use the new
feature and those that do not are shown in represented in Figure 6.2, where we plot the deltas
�BLEU = BLEU

FTG

� BLEU
bl

by document set.
Notice how we observe mixed results for the feature depending on the test-set. For

in-domain sets, we get significant improvements. For instance, for the WMT06, we get an
improvement of 1.04 blue-points for the best-case, while the worst case increases 0.08 BP,
with an average of 0.38 BP gain. For the out-of domain sets the results are less optimistic.
For instance, for NW10, the best-case system gets an improvement of 0.8, while the worse,
presents a loss of 0.46 BP, with an average gain of 0.15BP which is barely significant. On the
positive side, the general average gain is of 0.27 BP.

Analyzing the results by system (fig. 6.3) we observe an interesting pattern. For the
discriminative systems, we observe that a tendency to achieve large gains by using the feature.
These gains are more pronounced for moderately sparse alignments such as the DWA-5 and
DWA-6. Which register average gains larger than 0.5BP. For the symmetrized alignments, the
addition of the feature does not represent any significant change.

By comparing the gains by the system to the relative weight changes, we observed an
interesting correlation between the gains and the shift in the weight for the inverse phrasal
probability feature p(f |e) as shown in fig. 6.4.

Observe how there is a clear tendency in the gains obtained by adding the new feature.
Systems for which the new feature was used to counterweight the p(f |e) feature, achieve
better results. This was done by MERT by increasing the penalization for the p(f |e) feature.

Summarizing, using the phrase-gap feature, results in a boost for phrases that carry
many gaps. When combined with an increased phrase-translation penalty, we can achieve
large improvements in translation quality. These improvements were more noticeable for in-
domain test-sets. However, for the most part, the best-quality results were delivered by the
DWA-5 system using the target gap feature.
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Figure 6.2: BLEU gains of systems using the target gap feature segmented by test-document.
On the left axis we present the different document groups. On the horizontal axis, the gains
of BLEU �BLEU = BLEU

ftg

�BLEU
bl

. For each document set, the overall average gain
is marked with an x. The general average is represented by the vertical dashed line.

Gap features can be more useful in situations where we have limited training data. In
the next section we will present the results of experiments done in Chinese.

6.3 Translation Gaps for Limited Scenarios

In this section, we present the translation results of our experiments using limited data and a
combination of two gap-features (source and target). These results were presented in (Guzman
et al., 2009).
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Figure 6.3: BLEU gains using the target gap feature segmented by system. On the left axis
we present the different translation models used. On the horizontal axis, the gains of BLEU.
For each system, their average gain is marked with an x. The general average is represented
by the vertical dashed line.

6.3.1 Setup

For this experiment, we used a training data set consisting of the GALE P3 Data1. The data
was filtered to have maximum sentence length 30. The final training set contains one million
sentences. This setting is more limited than the previous experiments. The different sys-
tems that were used, were built upon the alignments from the DWA with alignment threshold
p = {0.1..0.9}, and the symmetrized alignment (grow-diag-final). We use the MT05 test set
for tuning, and used a subset of the development dataset of GALE07 Evaluation (DEV07) as
the blind testing data. The data set consists subsets from different sources: Newswire (NW)
and Weblog (Web) with 427 and 358 sentences respectively. In Table 6.6 we display the BLEU
Scores for these sets. First, notice how in our baseline the best results are obtained by the sys-

1 FOUO data (LDC2006G05), HKnews (LDC2004T08), XinhuaNews (LDC2003T05), and parallel data
from GALE (LDC2008E40, LDC2007E101, LDC2007E86, LDC2007E45, LDC2006E92, LDC2006E34,
LDC2006E26, and LDC2005E83).
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tem that previously achieved the highest AER (DWA-5). From there on, the systems trend to
have lower quality as we shift the balance from precision/recall in our alignment. However,
the alignments with higher recall (DWA-1) trend to perform more poorly than the high preci-
sion ones (DWA-9). This is not surprising, as this phenomenon has been observed previously.
For the systems that use the number of unaligned words as a feature, we observe that the best
results are found with a higher precision alignment (DWA-6). This can be explained as the
result of penalizing the phrases that include a lot of gaps, which as shown before have lower
human-perceived quality. The improvements of using gap features are more striking for the
Web test set, where we obtain up to 2BP of improvement (for DWA-7).

6.4 Conclusions
In this chapter, we introduced two alternatives to take advantage from alignment structure for
improving machine translation at the alignment training and decoding phases.

We proposed two alignment quality metrics, which by counting the negative space of the
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NW WEB
Alignment base gaps base gaps

DWA-1 21.20 22.25 18.70 18.76
DWA-2 22.97 23.3 20.06 20.11
DWA-3 23.11 23.35 20.18 20.3
DWA-4 24.19 24.81 20.50 21.81
DWA-5 24.56 24.72 20.78 21.57
DWA-6 24.05 24.97 20.53 22.57
DWA-7 23.05 24.62 19.54 21.86
DWA-8 23.83 24.74 20.52 21.88
DWA-9 23.32 24.26 20.26 21.62
SYM 23.15 24.18 20.22 21.11

Table 6.6: Translation results for the baseline systems (base) and the gap-feature enhanced
systems (gaps) built upon different alignments.

alignment into account, incorporate more of the structure of the alignments. We observed how
the Balanced Accuracy metric yields denser alignments whose structure is more similar to the
hand-aligned data. However, these denser alignments inhibit the phrase-extraction process and
result in compact phrase tables. On the other hand we also introduced the F0 measure which
takes into account the NULL alignments into when computing the alignment quality score.
This metric results in higher quality alignments with respect both to the F and F0 metric.
Furthermore, this metric also represents an improvement to translation quality with respect
to the baseline and other symmetrization heuristic. We also observed how these translation
results are consistent with the predictions drawn from our general translation quality predictive
model.

At the decoding stage, we proposed to incorporate alignment structure by integrating
the unaligned word count as a decoding feature. This modification works well for translation
models coming from discriminative alignments for which produces the best translations (ex-
cept in one case). We also observed how the target gap feature interacts with the translation
model phrase-translation probabilities and yields the best results when optimization weights
for such phrasal probabilities are penalized more. We also observed that the gain from using
this feature is dependent on the translation task and yields best results for in-domain tasks.

When using not only the target gap feature but also the source gap feature to translate
data in a constrained setting, we observed a consistent improvement for different machine
translation models. In the best of cases, we were able to gain 2 BLUE points which is a highly
significant result. Finally, the combination of both improvements do not present particular
improvements.

In conclusion, by using the alignment structural information, in particular the gaps in
the alignment, we were able to turn a feature that originally appeared as a liability into an ad-
vantage. In other words, by using the knowledge gained during the development of this thesis,
by identifying important alignment characteristics, controlling them and providing means to
use the information to our advantage, we were able to improve machine translation.





Chapter 7

Conclusions

Improving word alignment quality has been a major focus of research in the SMT commu-
nity. However, little attention was focused to understand the effects of alignment structure into
the Machine Translation Pipeline. Therefore, despite the improvements reached in alignment
quality, only modest improvements in translation performance were observed. In this disserta-
tion, we studied how alignment structure impacts the translation model and how a translation
model impacts translation performance. Additionally, we proposed alternatives to take into
account the alignment structure and moderate its effects.

In this chapter, we summarize the body of knowledge accumulated through the develop-
ment of this work. First, we revisit the observations made across different chapters. Then, we
revisit our original hypothesis and research questions. Finally we wrap up with a discussion
of the findings and propose future research directions.

7.1 Summary of our Findings
In this section we recapitulate the findings made throughout this thesis. From each chapter,
we only extract the most important observations and consolidate them in a comprehensive list.

7.1.1 The Effects of Alignments on the Phrase-Based Translation Model
In Chapter 3, we performed a series of experiments that allowed us to compare different align-
ments according to their quality and structure. The observations made were the following:

� By analyzing word alignments according to several characteristics and comparing them
to hand-aligned data, we observed that there is a lot of room of improvement for our
alignment models. Both in terms of alignment quality and structure, our alignments are
far from human generated data

� We observed that sparser word alignments lead to a higher number of extracted phrases,
which ultimate results in larger phrase tables. While these larger phrase tables contain
longer phrases, many of the phrases contain unaligned words.

� The number of unaligned words in the alignment have a large impact on the character-
istics of the extracted phrase table.

99
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� The unaligned words in the extracted phrase pairs follow the distribution of unaligned
words in the alignment from where they were extracted.

� A manual evaluation of phrase pair quality showed that more unaligned words (gaps)
result in a lower human perceived quality.

� Phrases extracted from human aligned data have better quality than computer generated
word alignments.

7.1.2 The Characteristics of the Translation Model
In Chapter 4 we generated a large number of phrase-tables using different alignments. Then,
we estimated regression models for different characteristics of the phrase-tables. Our most
important findings were:

� We corroborated that density variables (gaps, links) have high correlation with many
phrase-table characteristics, especially the number of entries and the length of the phrase-
pairs.

� We discovered that the alignment distortion also plays an important role in determining
certain phrase-table variables, such as the entropy of the lexical translation features.

� We observed that the phrase-extraction algorithm preserves the distribution of alignment
density allowing it to carry to phrases. Thus, denser alignments yield denser phrase-
pairs.

� The case is different for alignment dimensions and alignment distortion. We observed
that phrase-extraction changes drastically the expected behavior of distortion variables
(e.g. the more crossings in our alignment, the fewer crossing inside the phrase-pairs,
because highly distorted phrases can’t be extracted with the current heuristic).

� We observed that alignment quality as measured by the F-metric (AER) has little re-
lationship with other phrase-table variables, confirming that phrase-extraction exploits
alignment structure and has little to do with alignment quality.

� We discovered that the entropy in the phrase-translation probability can be predicted
very accurately using alignment gaps.

� Lexical scores were more difficult to predict using the structural alignment features.
While diagonality predicts about 30% of the variance in the entropy of these translation
features, the model is not complete.

� By testing our models on unseen Chinese-English and Arabic-English data, we ob-
served that many of the predictions hold well for different language pairs. This high-
lights the fact that phrase-extraction does not depend on linguistic features but rather on
the structure of the alignment itself.

7.1.3 Predicting Translation Quality
In Chapter 5, we ran a series of experiments where we used full translation models to translate
different data sets. Then, we predicted the translation quality using the information from the
translation models. We discovered that:
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� Predicting translation is not as easy as predicting the characteristics of a translation
model. This is mainly because translation performance is dependent on the translation
task. Thus, we analyzed data from a general perspective and from a translation-task
targeted view.

� When aiming for a general model, the most important characteristics for translation
quality come from the phrase table. In short, we need to have many translation options
(from large translation models, with high inverse lexical entropy), that are well defined
(with low lexical entropy). Additionally, hypotheses need to have good alignment sup-
port (with few gaps) and high fluency (with low language model cost).

� When dealing with easier translation tasks, we need that our final translation is fluent
(with low language model cost), and that it has good alignment support (i.e. that the
aggregate number of alignment gaps remains low).

� For difficult translation tasks we observed that using fewer, but more reliable translation
options is preferable. Language fluency is also very important.

� While the generic models make weaker predictions, they hold across language pairs.
On the other hand, targeted models are more dependent on the language pair. They
performed very well for Spanish while presented lack-of-fit on Chinese-English.

7.1.4 Improving Translation Using Alignment Structure
Finally in Chapter 6, we introduced two alternatives to take advantage of alignment structure
for improving machine translation at the alignment training and decoding levels. In summary:

� We proposed two alignment quality metrics (BA and F0), which by taking the negative
space of the alignment into account, incorporate more of the structure of the alignments.

� We observed that the Balanced Accuracy metric yields denser alignments whose struc-
ture is more similar to the hand-aligned data. However, these denser alignments inhibit
the phrase-extraction process and result in phrase tables with fewer translation options.

� We concluded that having more human-alignment-like structure can be counterproduc-
tive when human alignments are very dense.

� We also introduced the F0 measure which takes into account the NULL alignments into
when computing the alignment quality score. This metric results in higher quality align-
ments with respect to both the F and F0 metric and also improved translation quality.
We observed that this improvement can be traced to the increase in translation options
in the phrase-table coupled with other structural alignment differences.

� We also observed that our general translation quality prediction models hold well for
predicting translation gains based on changes in alignment structure.

� At the decoding stage, we proposed to incorporate alignment structure by integrating
the unaligned word count as a decoding feature. This modification works well for
translation models coming from discriminative alignments for which produce the best
translations overall.
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� When using not only the target gap feature but also the source gap feature to trans-
late data in a constrained setting, we observed a consistent improvement for different
machine translation models.

� By using the alignment structural information, in particular the gaps in the alignment,
we were able to turn a feature that originally appeared as a liability into an advantage.
In other words, by using the knowledge gained during the development of this thesis, by
identifying important alignment characteristics, controlling them and providing means
to use the information to our advantage, we were able to improve machine translation.
In the best of cases, we were able to gain 2 BLEU points which is a highly significant
result.

7.2 Hypothesis and Research Questions Revisited
In Section 1.2 we presented our main hypothesis and dissected into three different parts. The
first part was related to the effects that alignment structure has in the consolidation of our
translation model. The second part was related to the influence of alignments on translation
performance. The third part was related to the modulation of alignment structure in favor of
translation performance. Below, we revisit each point individually.

The impact of alignment structure on the translation model
We observed that structural alignment characteristics influence greatly the characteris-
tics of the resulting translation model. Our models explain accurately the variations in
the size and lexical diversity of our translation models using only alignment structure
variables as predictors. Furthermore, these models hold very well for different lan-
guage pairs, which highlights the fact that phrase-extraction in its current form is very
dependent on the structure of the alignments.

The impact of alignment structure of the translation model on MT performance
Translation performance depends largely on the translation task. Thus, the variables
of the translation model that are more useful differ depending on the domain of ap-
plication. However, we were able to obtain predictive models that explain translation
performance in general moderately well. These models rely upon the characteristics
of the translation model to explain differences in performance. Additionally, we also
observed that precisely these characteristics are largely influenced by the structure of
the alignment.

Providing means to control alignment structure will result in improvements in MT per-
formance
We discovered that the right engineering of features can help to improve performance.
We also observed that the human alignment is not the best gold-standard in terms of
structure, thus having discriminative training to imitate human alignment’s structure
is not recommended. We observed that alignment target gaps explained some of the
variance in translation performance. When we added alignment gap information to the
decoder, we observed that we could achieve better estimation and improve performance
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for discriminative alignments. Furthermore, in cases of limited training data, these new
features helped to improve estimation and yield better translation results

In addition to our hypothesis, there were different research questions that were initially
posed. Below we address them individually.

Which variables describing word alignments, translation models and translation hy-
potheses that we are going to include in this study?
Our study was motivated by previous research. Thus, we considered some variables
that had already been used for describing alignment structure (e.g. number of links,
crossings). Additionally we proposed new measures for alignment such as the align-
ment gaps or the alignment diagonality. We measured alignment structure at several
stages of the pipeline. First, we measured word alignments directly, then we measured
the alignments embedded into the phrase pairs and finally we measured the alignment
structure of the phrase-pairs used for translation.

How are we going to characterize the decoding search space? Which variables are we
going to use to discriminate between good and bad translation hypotheses?
In addition to the cost of the decoding features, we used the alignment’s variables for
the translation hypotheses. Based on those features we constructed models to predict
translation quality.

How are we going to deal with undesired effects in multivariate analysis such as collinear-
ity?
To deal with multicollinearity, we opted for the use of feature selection (stepwise) and
retained those features that yielded stable models. While other options were available
(regularization, dimension reduction), this choice was motivated by a preference to-
wards model interpretability.

Which type of multivariate analysis better suits our scenario?
Also to favor interpretability, we opted for multivariate linear regression.

Which model or multivariate technique should be used to build our model?
While we tested several approaches to build complex models, we opted to use the sim-
pler models, to favor the interpretation of the results.

How do we compare predictive models? How do we evaluate their robustness?
We employed the determination coefficient (R2) on unseen data. Such a metric gives us
an idea of how well a model fits our dependent variables.

How do we control alignment structure for Machine Translation?
As we mentioned before, we opted for two different alternatives: using discrimina-
tive training towards an alignment structure aware metric, and using decoding features
that incorporate alignment structure (in form of alignment gaps) to refine its translation
model.
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7.3 Final Remarks
During the development of this dissertation we have discovered how different characteristics
of the alignment impact Machine Translation. We discovered that while good quality align-
ments yielded good phrase-pairs, the consolidation of a translation model is more dependent
on the alignment structure than alignment quality. We observed that human-alignments are
more dense than the computer generated counterparts, which trend to be more sparse and
precision-oriented. Trying to emulate human-like alignment structure resulted in poorer sys-
tems, despite that denser alignments with fewer alignment gaps have better phrase-pairs. This
is due to the fact that those translation models trend to be more compact and lack translation
options. On the other hand, more translation options, even if they are noisier, help to im-
prove the quality of the translation. This is due to the fact that translation does not rely only
on the translation model, but also on other factors (e.g. the language model). Lastly, when
we provide the decoder with features that help it to make “more informed decisions” we ob-
serve a clear improvement in translation quality. This was specially true for the discriminative
alignments which inherently leave more words unaligned. The result is more evident in low-
resource settings where having larger translation lexicons represent more translation options.
Using simple features to help the decoder discriminate translation hypotheses, clearly showed
consistent improvements.

By performing a detailed analysis, and understanding better how phrase-based transla-
tion works, we were able to better engineer decoding features. We are confident that there are
more directions to explore in terms of alignment structure. In the last section of this document,
we briefly discuss them.

7.4 Future Work
In this dissertation we have observed how different alignment characteristics affect phrase-
based statistical machine translation. We also observed how adding structural alignment in-
formation can improve translation quality specially for discriminative alignments. However,
this is an ongoing process and there are several directions in which this research can be ex-
panded.

Investigate the effect of coupling Alignment enhancements such as the F0 training with
the use of structural alignment decoding features such as the gap features.
We would like to explore the interaction between tuning towards an structure-aware
alignment metric and structure-aware decoding features. This could lead to improve-
ments specially for the F0 alignment which is more sparse, with more alignment gaps
(and more noise) that could be smoothed using the gap decoding features.

Use other alignment characteristics into decoding. Specially, distortion features such
as the number of crossings and the diagonality of the translation hypothesis align-
ment.
In this dissertation we explored the inclusion of alignment gaps as a decoding feature
and we observed improvements in translation quality. However, we could include more
decoding features that incorporate alignment structure, such as diagonality or number of
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link crossings. Optimizing log-linear weights for a higher dimensionality set of features
would require some modifications of our training approach. In order to do so, we should
move from a linear-descent-based optimization metric such as MERT towards one more
resilient to higher dimensionality such as MIRA (Chiang et al., 2008; Watanabe et al.,
2007).

Explore other regression model specification alternatives.
During our prediction model specification, we faced some issues related to higher di-
mensionality. We opted to use feature selection to resolve them. However, we could
explore the use of mapped features (to build polynomial models) coupled with regular-
ization. In that sense, we would be able to explore the interaction of several features
and higher order terms. On the other hand, to cope with the original dimensionality
problem, we could use feature dimension reduction techniques such as PCA to reduce
the impact of collinearity. This would require that we make an accurate description of
the principal components to ensure that the interpretation remains consistent.

Propose a complex hierarchical model that combines regression from alignment to
phrase-tables and regression from phrase-tables to translation quality.
In this thesis, we provided two different prediction models that work at two separate
stages. The situation arises from the fact that they necessarily have to be estimated
using separate samples. Anyhow, we could couple both of their findings into a single
more complex model, by using multivariate techniques such as path analysis or struc-
tural equation modeling.

Explore new optimization techniques.
We observed that the translation quality models we obtained are susceptible to MERT
optimization. Specially when adding new features to decoding that change the decoder’s
search space. Thus it would be interesting to incorporate linear regression modeling
coupled with response surface methods to propose a new optimization scheme for Ma-
chine Translation.





Appendix A

Baseline System

In this annex we describe the data used for training and testing of the Spanish-English systems
used through this dissertation.

A.1 Translation Training Data
In this section we introduce the characteristics of our baseline Spanish-English translation
system. We start by describing de domain of the data and its characteristics. We also outline
the preprocessing steps performed to clean the data.

A.1.1 Data Sources
The source of the data is European Parliament Proceedings (EUROPARL Version 5), News
commentary text, as well as the United Nations proceedings from year 2000 as provided for
WMT 2010 competition. The total number of lines of data is displayed in Table A.1.

A.1.2 Preprocessing
For this data, we performed three preprocessing steps: tokenization, lowercasing and trunca-
tion. In fig. A.1 we present an illustration of the first two processes.

raw input
The Parliament’’s proceedings have been handed out.

after tokenization
The Parliaments ‘s proceedings have been handed out .

after lowercasing
the parliaments ‘s proceedings have been handed out .

Figure A.1: Example of preprocessing

Tokenization splits words into simpler forms. It separate punctuation marks from words,
so they are considered as single words. Thus it is expected to find longer sentences after the
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procedure. However, the vocabulary size is expected to go down because morphology com-
plexity is reduced. Lowercasing does not change to the distribution of length of the sentences,
however further reduces the vocabulary. Truncation removes sentences longer than a certain
limit. This is recommended due to the aligners’ memory/processing limitations. For this cor-
pus, we removed sentences longer than 50 words using standard cleaning corpus script from
Moses decoder. This script removes empty lines, removes redundant space characters, drops
lines (and their corresponding lines) that are empty, lines that are too short, too long or violate
the 9-1 sentence ratio limit for GIZA++.

In Table A.1, we present the statistics for RAW and Preprocessed (PP) Data

RAW PP Change(%)
Set Lines Tok Voc Lines Tok Voc Lines Tok Voc

Spanish
EU 1.7M 43.1M 393.1K 1.4M 35.1M 140.0K 13% 19% 64%
NC 98.6K 2.5M 123.1K 90.0K 2.3M 59.2K 9% 8% 52%
UN 6.2M 190.6M 1.4M 4.9M 129.8M 330.1K 21% 32% 76%
total 8.0M 236.2M 1.6M 6.4M 167.2M 387.9K 19% 29% 76%

English
EU 1.7M 41.2M 286.7K 1.4M 33.9M 91.9K 13% 18% 68%
NC 98.6K 2.1M 101.9K 90.0K 2.0M 43.0K 9% 4% 58%
UN 6.2M 164.3M 1.3M 4.9M 115.3M 305.2K 21% 30% 76%
total 8.0M 207.6M 1.5M 6.4M 151.1M 346.3K 19% 27% 76%

Table A.1: Statistics for Raw and preprocessed data for Europarl (EU), News Commentary
(NC) and UN training data. We present the total number of training examples (lines), number
of tokens (tok) and the vocabulary size (voc).

From this table, we can observe that preprocessing indeed reduces vocabulary (unique
words) size while preserving most of the content. If we look at the reduction in vocabulary size
(Change column), we find that more than 50% of the vocabulary is reduced, while the total
number of tokens (word instances) is reduced at most 32%. This drastic drop in number of
words can be attributed mostly to the cleaning part, where we drop non-conforming sentences
(and thus, some non-functional content).

A.2 Translation Test Data
In this section we provide some statistics about the data used in our translation tests. The
sources for our data come from different years of the WMT competition, and each consists of
samples coming from different domains:

� Europarl data
Consists of proceedings from the European Parliament. Test sets: WMT06, WMT07,
WMT08.
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Spanish-English data
Dataset Size

AC 4107
NC07 2007
NC08 2028
NW09 2525
NW10 2489
WMT06 2000
WMT07 2000
WMT08 2000

Table A.2: Datasets used for translation

� Acquis Communautaire corpus
Consists of European law. Test sets: AC.

� News Commentary
Consists of news commentary (editorials) from different sources. Test sets: NC07,
NC08

� News Wire
Consists of excerpts of news from European newspapers (Le Monde, El Paı́s, etc). Test
sets: NW10, NW09

Depending on their domain, each set can be considered to be in or out of domain. For
instance WMT06 through WMT08 are considered in-domain because the translation tasks
come from the Europarl Corpus. On the other hand, NW and NC data is considered out of
domain. Below, we present the statistics for this data.

A.3 Hand Aligned Data
In the following table we present the statistics for the Spanish-English hand alignment data
from EPPS. The original data consisted of 500 lines. But after preprocessing the total amount
was reduced to 420. We then proceeded to divide that set and use 200 lines for training and
220 for testing.
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Length EN-Words ES-Words Links

RAW
EPPS-dev 100 3162 3310 3969
EPPS-test 400 12990 13665 17475

total 500 16152 16975 21444
Preprocessed
EPPS-dev 84 2075 2082 2858
EPPS-test 336 7997 8398 11915

total 420 10072 10480 14773
Final Set
final-dev 200 4760 4887 6779
final-test 220 5312 5593 7994

total 420 10072 10480 14773

Table A.3: Data Statistics for Spanish-English hand alignments
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Variables

In this annex we describe in detail the variables used across this study.

B.1 Alignment Variables
Given a set of alignments A where each alignment A

k

2 A is represented by matrix of I
k

source words by J
k

target words, l
k

(i, j) represents a link between the ith source word and
the jth target word, and L

k

represents the total number of links in the alignment A
k

, we can
compute the following statistics.

B.1.1 Alignment Dimension
ASL Average number of source words

ASLA =

1

|A|
X

Ak2A

I
k

(B.1)

ATL Average number of target words

ATLA =

1

|A|
X

Ak2A

J
k

(B.2)

W The normalized alignment matrix width
The geometric average of the source and target lengths of an alignment k

W
k

=

p
I
k

J
k

(B.3)

B.1.2 Alignment Density
ANLK Average number of links

This variable represents the average number of links.

ANLKA =

1

|A|
X

Ak2A

L
k

(B.4)
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ALK Average link density
This variable represents the normalized number of links per word in the alignment ma-
trix.

ALKA =

1

|A|
X

Ak2A

X

l2Ak

L
k

W
k

(B.5)

ASLK Average number of links per source word
This variable represents the average number of links per source word.

ASLKA =

1

|A|
X

Ak2A

L
k

I
k

(B.6)

ANSG Average number of source gaps
This variable represents the average number of unaligned source words.

ANSGA =

1

|A|
X

Ak2A

X

i2Ik

Y

j2Jk

(1� l(i, j)) (B.7)

ASG Average number source gaps per normalized number of words
This variable represents the average number of unaligned source words divided by the
normalized length of the matrix.

ASGA =

1

|A|
X

Ak2A

1

W
k

X

i2Ik

Y

j2Jk

(1� l(i, j)) (B.8)

B.1.3 Alignment Distortion
ACR Average number of alignment crossings

This variable represents the average the number of crossings in an alignment normalized
by the matrix width.

ACRA =

1

|A|
X

Ak2A

cross(A
k

)

W
k

(B.9)

The number of crossings cross are calculated in the by the algorithm B.1.

ADG Average alignment diagonality
This variable represents the average diagonality of an alignment set. Diagonality is
defined as the absolute correlation between the positions in the i and j positions of the
links in the alignment A

k

.
DG

Ak
=

��⇢
i(l),j(l))

�� (B.10)

This gives us a notion of the monotonicity in the positions of the alignments.

ADGA =

1

|A|
X

Ak2A

DG
Ak

(B.11)
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Algorithm B.1 Calculate the number of crossings cr in a set of links l of size L
cr  0

sort(l)
for k = 1! L do
(i1, j1) l

k

for m = k + 1! L do
(i2, j2) l

m

if (i1 > i2 and j1 < j2) or (i1 < i2 and j1 > j2) then
cr  cr + 1

end if
end for

end for
return cr

ADT Average relative distortion
This variable represents the distortion between the ith and jth positions of the links in
the alignments.

ADTA =

1

|A|
X

Ak2A

X

l2Ak

|i(l)� j(l)|
W

k

(B.12)

B.1.4 Alignment Quality
P Precision

R Recall

F F measure

AER Alignment Error Rate For practical purposes AER = 1� F .

BA Balanced Accuracy

B.2 Phrase-table Variables
For each phrase-pair P

k

in the phrase table P , we have I
k

source words in the source phrase
and J

k

target words in the target side, l
k

(i, j) represents a link between the ith source word
and the jth target word in the phrase-pair, and L

k

represents the total number of links in the
alignment embedded in P

k

. Additionally, let |PI |, |PJ | be the total number of unique source
and target phrases, respectively.

B.2.1 Alignment Variables
PSG,PTG,PLK,PDT,PDG,PCR are calculated as its alignment counterparts.
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PWSG Average number of source gaps per word
This variable represents the average proportion of source unaligned words per source
word.

PWSGP =

1

|P|
X

Pk2P

1

I
k

X

i2Ik

Y

j2Jk

(1� l(i, j)) (B.13)

B.2.2 Phrase-table Dimension

PSL Average source phrase length

PSLP =

1

|P|
X

Pk2P

I
k

(B.14)

PTL Average target phrase length

PTLP =

1

|P|
X

Pk2P

J
k

(B.15)

B.2.3 Phrase-table Entries

PNE Total number of entries in the phrase-table
This quantity is equivalent to |P|. Also referred as the unique number of phrase-pairs
PNU.

PNI Total number of extracted phrase-pairs
This quantity is the number of non-unique phrase-pairs extracted from an alignment set.

PNU Total number of unique extracted phrase-pairs
See PNE.

B.2.4 Coverage Variables

PSU Percentage of source unique phrases

PSUP =

|PI |
|P| (B.16)

PTU Percentage of target unique phrases

PSUP =

|PJ |
|P| (B.17)
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B.2.5 Translation Entropies
PT1 Average Entropy of the inverse phrasal probability

PT1P = � 1

|PI |
X

(ek,fk)2P

p(f
k

|e
k

) log p(f
k

|e
k

) (B.18)

PT2 Average Entropy of the inverse lexical probability

PT2P = � 1
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PT3 Average Entropy of the direct phrasal probability

PT3P = � 1
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PT4 Average Entropy of direct lexical probability

PT4P = � 1

|PJ |
X

(ek,fk)2P

p
lex
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) log p(
lex
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B.3 Translation (First-best) Variables
In this part we define the first-best hypothesis variables. For compactness, we define only
the most important. For each first-best translation F

k

from source sentences in document D,
we have I

k

source words in the source phrase and J
k

target words in the target side, l
k

(i, j)
represents a link between the ith source word and the jth target word in the phrase-pair, and
L
k

represents the total number of links in the alignment embedded in F
k

. Additionally, let
|�

k

| be the number of phrases used in translation F
k

. Then:

B.3.1 Alignment Variables
FSG,FTG,FLK,FDT,FDG,FCR are calculated as its alignment counterparts

B.3.2 Cost Variables
Cost variables are calculated by computed the negative log-likelihood of the probability in
question. For instance, for language models:

FLM Average language model cost

FLMD =

1

|D|
X

Fk2D

� log(p
lm

) (B.22)

For the rest of the cost variables, the procedure is the same.
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B.3.3 Translation Quality
BLEU Bleu

MET Meteor

TER Translation Error Rate
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